Cargando…

Analysis of Metabolomics Datasets with High-Performance Computing and Metabolite Atlases

Even with the widespread use of liquid chromatography mass spectrometry (LC/MS) based metabolomics, there are still a number of challenges facing this promising technique. Many, diverse experimental workflows exist; yet there is a lack of infrastructure and systems for tracking and sharing of inform...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Yushu, Sun, Terence, Wang, Tony, Ruebel, Oliver, Northen, Trent, Bowen, Benjamin P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588804/
https://www.ncbi.nlm.nih.gov/pubmed/26287255
http://dx.doi.org/10.3390/metabo5030431
Descripción
Sumario:Even with the widespread use of liquid chromatography mass spectrometry (LC/MS) based metabolomics, there are still a number of challenges facing this promising technique. Many, diverse experimental workflows exist; yet there is a lack of infrastructure and systems for tracking and sharing of information. Here, we describe the Metabolite Atlas framework and interface that provides highly-efficient, web-based access to raw mass spectrometry data in concert with assertions about chemicals detected to help address some of these challenges. This integration, by design, enables experimentalists to explore their raw data, specify and refine features annotations such that they can be leveraged for future experiments. Fast queries of the data through the web using SciDB, a parallelized database for high performance computing, make this process operate quickly. By using scripting containers, such as IPython or Jupyter, to analyze the data, scientists can utilize a wide variety of freely available graphing, statistics, and information management resources. In addition, the interfaces facilitate integration with systems biology tools to ultimately link metabolomics data with biological models.