Cargando…

A MADS-box gene NtSVP regulates pedicel elongation by directly suppressing a KNAT1-like KNOX gene NtBPL in tobacco (Nicotiana tabacum L.)

Optimal inflorescence architecture is important for plant reproductive success by affecting the ultimate number of flowers that set fruits and for plant competitiveness when interacting with biotic or abiotic conditions. The pedicel is one of the key contributors to inflorescence architecture divers...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Di, Chen, Xiaobo, Zhang, Zenglin, Liu, Danmei, Song, Gaoyuan, Kong, Xingchen, Geng, Shuaifeng, Yang, Jiayue, Wang, Bingnan, Wu, Liang, Li, Aili, Mao, Long
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588881/
https://www.ncbi.nlm.nih.gov/pubmed/26175352
http://dx.doi.org/10.1093/jxb/erv332
Descripción
Sumario:Optimal inflorescence architecture is important for plant reproductive success by affecting the ultimate number of flowers that set fruits and for plant competitiveness when interacting with biotic or abiotic conditions. The pedicel is one of the key contributors to inflorescence architecture diversity. To date, knowledge about the molecular mechanisms of pedicel development is derived from Arabidopsis. Not much is known regarding other plants. Here, an SVP family MADS-box gene, NtSVP, in tobacco (Nicotiana tabacum) that is required for pedicel elongation was identified. It is shown that knockdown of NtSVP by RNA interference (RNAi) caused elongated pedicels, while overexpression resulted in compact inflorescences with much shortened pedicels. Moreover, an Arabidopsis BREVIPEDECELLUS/KNAT1 homologue NtBP-Like (NtBPL) was significantly up-regulated in NtSVP-RNAi plants. Disruption of NtBPL decreased pedicel lengths and shortened cortex cells. Consistent with the presence of a CArG-box at the NtBPL promoter, the direct binding of NtSVP to the NtBPL promoter was demonstrated by yeast one-hybrid assay, electrophoretic mobility shift assay, and dual-luciferase assay, in which NtSVP may act as a repressor of NtBPL. Microarray analysis showed that down-regulation of NtBPL resulted in differential expression of genes associated with a number of hormone biogenesis and signalling genes such as those for auxin and gibberellin. These findings together suggest the function of a MADS-box transcription factor in plant pedicel development, probably via negative regulation of a BP-like class I KNOX gene. The present work thus postulates the conservation and divergence of the molecular regulatory pathways underlying the development of plant inflorescence architecture.