Cargando…
Extensive Hair-Shaft Elongation by Isolated Mouse Whisker Follicles in Very Long-Term Gelfoam® Histoculture
We have previously studied mouse whisker follicles in Gelfoam® histoculture to determine the role of nestin-expressing plutipotent stem cells, located within the follicle, in the growth of the follicular sensory nerve. Long-term Gelfoam® whisker histoculture enabled hair follicle nestin-expressing s...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4589329/ https://www.ncbi.nlm.nih.gov/pubmed/26421923 http://dx.doi.org/10.1371/journal.pone.0138005 |
Sumario: | We have previously studied mouse whisker follicles in Gelfoam® histoculture to determine the role of nestin-expressing plutipotent stem cells, located within the follicle, in the growth of the follicular sensory nerve. Long-term Gelfoam® whisker histoculture enabled hair follicle nestin-expressing stem cells to promote the extensive elongation of the whisker sensory nerve, which contained axon fibers. Transgenic mice in which the nestin promoter drives green fluorescent protein (ND-GFP) were used as the source of the whiskers allowing imaging of the nestin-expressing stem cells as they formed the follicular sensory nerve. In the present report, we show that Gelfoam®-histocultured whisker follicles produced growing pigmented and unpigmented hair shafts. Hair-shaft length increased rapidly by day-4 and continued growing until at least day-12 after which the hair-shaft length was constant. By day-63 in histoculture, the number of ND-GFP hair follicle stem cells increased significantly and the follicles were intact. The present study shows that Gelfoam® histoculture can support extensive hair-shaft growth as well as hair follicle sensory-nerve growth from isolated hair follicles which were maintained over very long periods of time. Gelfoam® histoculture of hair follicles can provide a very long-term period for evaluating novel agents to promote hair growth. |
---|