Cargando…

Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction

Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artific...

Descripción completa

Detalles Bibliográficos
Autores principales: de Greeff, Joachim, Belpaeme, Tony
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4589374/
https://www.ncbi.nlm.nih.gov/pubmed/26422143
http://dx.doi.org/10.1371/journal.pone.0138061
_version_ 1782392780661719040
author de Greeff, Joachim
Belpaeme, Tony
author_facet de Greeff, Joachim
Belpaeme, Tony
author_sort de Greeff, Joachim
collection PubMed
description Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children’s social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a “mental model” of the robot, tailoring the tutoring to the robot’s performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot’s bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance.
format Online
Article
Text
id pubmed-4589374
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-45893742015-10-02 Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction de Greeff, Joachim Belpaeme, Tony PLoS One Research Article Social learning is a powerful method for cultural propagation of knowledge and skills relying on a complex interplay of learning strategies, social ecology and the human propensity for both learning and tutoring. Social learning has the potential to be an equally potent learning strategy for artificial systems and robots in specific. However, given the complexity and unstructured nature of social learning, implementing social machine learning proves to be a challenging problem. We study one particular aspect of social machine learning: that of offering social cues during the learning interaction. Specifically, we study whether people are sensitive to social cues offered by a learning robot, in a similar way to children’s social bids for tutoring. We use a child-like social robot and a task in which the robot has to learn the meaning of words. For this a simple turn-based interaction is used, based on language games. Two conditions are tested: one in which the robot uses social means to invite a human teacher to provide information based on what the robot requires to fill gaps in its knowledge (i.e. expression of a learning preference); the other in which the robot does not provide social cues to communicate a learning preference. We observe that conveying a learning preference through the use of social cues results in better and faster learning by the robot. People also seem to form a “mental model” of the robot, tailoring the tutoring to the robot’s performance as opposed to using simply random teaching. In addition, the social learning shows a clear gender effect with female participants being responsive to the robot’s bids, while male teachers appear to be less receptive. This work shows how additional social cues in social machine learning can result in people offering better quality learning input to artificial systems, resulting in improved learning performance. Public Library of Science 2015-09-30 /pmc/articles/PMC4589374/ /pubmed/26422143 http://dx.doi.org/10.1371/journal.pone.0138061 Text en © 2015 de Greeff, Belpaeme http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
de Greeff, Joachim
Belpaeme, Tony
Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction
title Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction
title_full Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction
title_fullStr Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction
title_full_unstemmed Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction
title_short Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction
title_sort why robots should be social: enhancing machine learning through social human-robot interaction
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4589374/
https://www.ncbi.nlm.nih.gov/pubmed/26422143
http://dx.doi.org/10.1371/journal.pone.0138061
work_keys_str_mv AT degreeffjoachim whyrobotsshouldbesocialenhancingmachinelearningthroughsocialhumanrobotinteraction
AT belpaemetony whyrobotsshouldbesocialenhancingmachinelearningthroughsocialhumanrobotinteraction