Cargando…
Detecting Lung Diseases from Exhaled Aerosols: Non-Invasive Lung Diagnosis Using Fractal Analysis and SVM Classification
BACKGROUND: Each lung structure exhales a unique pattern of aerosols, which can be used to detect and monitor lung diseases non-invasively. The challenges are accurately interpreting the exhaled aerosol fingerprints and quantitatively correlating them to the lung diseases. OBJECTIVE AND METHODS: In...
Autores principales: | Xi, Jinxiang, Zhao, Weizhong, Yuan, Jiayao Eddie, Kim, JongWon, Si, Xiuhua, Xu, Xiaowei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4589383/ https://www.ncbi.nlm.nih.gov/pubmed/26422016 http://dx.doi.org/10.1371/journal.pone.0139511 |
Ejemplares similares
-
Exhaled Aerosol Pattern Discloses Lung Structural Abnormality: A Sensitivity Study Using Computational Modeling and Fractal Analysis
por: Xi, Jinxiang, et al.
Publicado: (2014) -
CFD Modeling and Image Analysis of Exhaled Aerosols due to a Growing Bronchial Tumor: towards Non-Invasive Diagnosis and Treatment of Respiratory Obstructive Diseases
por: Xi, Jinxiang, et al.
Publicado: (2015) -
Correlating exhaled aerosol images to small airway obstructive diseases: A study with dynamic mode decomposition and machine learning
por: Xi, Jinxiang, et al.
Publicado: (2019) -
Numerical optimization of targeted delivery of charged nanoparticles to the ostiomeatal complex for treatment of rhinosinusitis
por: Xi, Jinxiang, et al.
Publicado: (2015) -
Automatic epilepsy detection using fractal dimensions segmentation and GP–SVM classification
por: Jirka, Jakub, et al.
Publicado: (2018)