Cargando…
Geographic Distribution of Radiologists and Utilization of Teleradiology in Japan: A Longitudinal Analysis Based on National Census Data
BACKGROUND: Japan has the most CT and MRI scanners per unit population in the world, and as these technologies spread, their geographic distribution is becoming equalized. In contrast, the number of radiologists per unit population in Japan is the lowest among OECD countries and their geographic dis...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4589480/ https://www.ncbi.nlm.nih.gov/pubmed/26421721 http://dx.doi.org/10.1371/journal.pone.0139723 |
Sumario: | BACKGROUND: Japan has the most CT and MRI scanners per unit population in the world, and as these technologies spread, their geographic distribution is becoming equalized. In contrast, the number of radiologists per unit population in Japan is the lowest among OECD countries and their geographic distribution is unknown. Likewise, little is known about the use of teleradiology, which can compensate for the uneven distribution of radiologists. METHODS: Based on the Survey of Physicians, Dentists and Pharmacists and the Static Survey of Medical Institutions by the Ministry of Health, Labour and Welfare, a dataset of radiologists and CT and MRI utilizations in each of Japan’s 1811 municipalities was created. The inter-municipality equity of the number of radiologists was evaluated using Gini coefficient. Logistic regression analysis, based on Static Survey data, was performed to evaluate the association between hospital location and teleradiology use. RESULTS: Between 2006 and 2012 the number of radiologists increased by 21.7%, but the Gini coefficient remained unchanged. The number of radiologists per 1,000 CT (MRI) utilizations decreased by 17.9% (1.0%); the number was highest in metropolis and lowest in town/village and the disparity has widened from 1.9 to 2.2 (1.6 to 2.0) times. The number of hospitals and clinics using teleradiology has increased (by 69.6% and 18.1%, respectively). Hospitals located in towns/villages (odds ratio 1.61; 95% confidence interval 1.26–2.07) were more likely to use teleradiology than those in metropolises. CONCLUSIONS: Contrary to the CT and MRI distributions, radiologist distribution has not been evened out by the increase in their number; in other words, the distribution of radiologists was not affected by market-derived spatial competition force. As a consequence, the gap of the radiologist shortage between urban and rural areas is increasing. Teleradiology, which is one way to ameliorate this gap, should be encouraged. |
---|