Cargando…

A structural group-connectome in standard stereotactic (MNI) space

A group connectome of 20 subjects has been normalized into standard stereotactic (MNI) space. Data has been processed using the Gibbs' Tracking approach (Reisert et al., 2011) [11] and normalized into standard space using DARTEL (Ashburner, 2007) [1]. All data has been acquired within the scope...

Descripción completa

Detalles Bibliográficos
Autor principal: Horn, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4589797/
https://www.ncbi.nlm.nih.gov/pubmed/26543893
http://dx.doi.org/10.1016/j.dib.2015.08.035
Descripción
Sumario:A group connectome of 20 subjects has been normalized into standard stereotactic (MNI) space. Data has been processed using the Gibbs' Tracking approach (Reisert et al., 2011) [11] and normalized into standard space using DARTEL (Ashburner, 2007) [1]. All data has been acquired within the scope of the study A. Horn, D. Ostwald, M. Reisert, F. Blankenburg, The structural–functional connectome and the default mode network of the human brain, NeuroImage 102 (2013) 142–151. http://doi.org/10.1016/j.neuroimage.2013.09.069. The utility of this dataset can be described by the following points: In medical studies in which subject-specific dMRI is not available, a standardized connectome may help to gain some canonical insight into white-matter connectivity. The dataset enables scientists who use different modalities (like EEG, MEG etc.) without access to MRI, to combine studies obtained using other methodology with insights from the brain's inner structural formation. The dataset could also extend possible claims made by meta-analyzes/literature-based studies.