Cargando…

Disconnected neuromagnetic networks in children born very preterm: Disconnected MEG networks in preterm children

Many children born very preterm (≤32 weeks) experience significant cognitive difficulties, but the biological basis of such problems has not yet been determined. Functional MRI studies have implicated altered functional connectivity; however, little is known regarding the spatiotemporal organization...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Annette X., AuCoin-Power, Michelle, Taylor, Margot J., Doesburg, Sam M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4589841/
https://www.ncbi.nlm.nih.gov/pubmed/27330980
http://dx.doi.org/10.1016/j.nicl.2015.08.016
Descripción
Sumario:Many children born very preterm (≤32 weeks) experience significant cognitive difficulties, but the biological basis of such problems has not yet been determined. Functional MRI studies have implicated altered functional connectivity; however, little is known regarding the spatiotemporal organization of brain networks in this population. We provide the first examination of resting-state neuromagnetic connectivity mapped in brain space in school age children born very preterm. Thirty-four subjects (age range 7–12 years old), consisting of 17 very preterm-born children and 17 full-term born children were included. Very preterm-born children exhibited global decreases in inter-regional synchrony in all analysed frequency ranges, from theta (4–7 Hz) to high gamma (80–150 Hz; p < 0.01, corrected). These reductions were expressed in spatially and frequency specific brain networks (p < 0.0005, corrected). Our results demonstrate that mapping connectivity with high spatiotemporal resolution offers new insights into altered organization of neurophysiological networks which may contribute to the cognitive difficulties in this vulnerable population.