Cargando…
Water Selective Imaging and bSSFP Banding Artifact Correction in Humans and Small Animals at 3T and 7T, Respectively
INTRODUCTION: The purpose of this paper is to develop an easy method to generate both fat signal and banding artifact free 3D balanced Steady State Free Precession (bSSFP) images at high magnetic field. METHODS: In order to suppress fat signal and bSSFP banding artifacts, two or four images were acq...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591352/ https://www.ncbi.nlm.nih.gov/pubmed/26426849 http://dx.doi.org/10.1371/journal.pone.0139249 |
_version_ | 1782393065916334080 |
---|---|
author | Ribot, Emeline J. Wecker, Didier Trotier, Aurélien J. Dallaudière, Benjamin Lefrançois, William Thiaudière, Eric Franconi, Jean-Michel Miraux, Sylvain |
author_facet | Ribot, Emeline J. Wecker, Didier Trotier, Aurélien J. Dallaudière, Benjamin Lefrançois, William Thiaudière, Eric Franconi, Jean-Michel Miraux, Sylvain |
author_sort | Ribot, Emeline J. |
collection | PubMed |
description | INTRODUCTION: The purpose of this paper is to develop an easy method to generate both fat signal and banding artifact free 3D balanced Steady State Free Precession (bSSFP) images at high magnetic field. METHODS: In order to suppress fat signal and bSSFP banding artifacts, two or four images were acquired with the excitation frequency of the water-selective binomial radiofrequency pulse set On Resonance or shifted by a maximum of 3/4TR. Mice and human volunteers were imaged at 7T and 3T, respectively to perform whole-body and musculoskeletal imaging. “Sum-Of-Square” reconstruction was performed and combined or not with parallel imaging. RESULTS: The frequency selectivity of 1-2-3-2-1 or 1-3-3-1 binomial pulses was preserved after (3/4TR) frequency shifting. Consequently, whole body small animal 3D imaging was performed at 7T and enabled visualization of small structures within adipose tissue like lymph nodes. In parallel, this method allowed 3D musculoskeletal imaging in humans with high spatial resolution at 3T. The combination with parallel imaging allowed the acquisition of knee images with ~500μm resolution images in less than 2min. In addition, ankles, full head coverage and legs of volunteers were imaged, demonstrating the possible application of the method also for large FOV. CONCLUSION: In conclusion, this robust method can be applied in small animals and humans at high magnetic fields. The high SNR and tissue contrast obtained in short acquisition times allows to prescribe bSSFP sequence for several preclinical and clinical applications. |
format | Online Article Text |
id | pubmed-4591352 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45913522015-10-09 Water Selective Imaging and bSSFP Banding Artifact Correction in Humans and Small Animals at 3T and 7T, Respectively Ribot, Emeline J. Wecker, Didier Trotier, Aurélien J. Dallaudière, Benjamin Lefrançois, William Thiaudière, Eric Franconi, Jean-Michel Miraux, Sylvain PLoS One Research Article INTRODUCTION: The purpose of this paper is to develop an easy method to generate both fat signal and banding artifact free 3D balanced Steady State Free Precession (bSSFP) images at high magnetic field. METHODS: In order to suppress fat signal and bSSFP banding artifacts, two or four images were acquired with the excitation frequency of the water-selective binomial radiofrequency pulse set On Resonance or shifted by a maximum of 3/4TR. Mice and human volunteers were imaged at 7T and 3T, respectively to perform whole-body and musculoskeletal imaging. “Sum-Of-Square” reconstruction was performed and combined or not with parallel imaging. RESULTS: The frequency selectivity of 1-2-3-2-1 or 1-3-3-1 binomial pulses was preserved after (3/4TR) frequency shifting. Consequently, whole body small animal 3D imaging was performed at 7T and enabled visualization of small structures within adipose tissue like lymph nodes. In parallel, this method allowed 3D musculoskeletal imaging in humans with high spatial resolution at 3T. The combination with parallel imaging allowed the acquisition of knee images with ~500μm resolution images in less than 2min. In addition, ankles, full head coverage and legs of volunteers were imaged, demonstrating the possible application of the method also for large FOV. CONCLUSION: In conclusion, this robust method can be applied in small animals and humans at high magnetic fields. The high SNR and tissue contrast obtained in short acquisition times allows to prescribe bSSFP sequence for several preclinical and clinical applications. Public Library of Science 2015-10-01 /pmc/articles/PMC4591352/ /pubmed/26426849 http://dx.doi.org/10.1371/journal.pone.0139249 Text en © 2015 Ribot et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Ribot, Emeline J. Wecker, Didier Trotier, Aurélien J. Dallaudière, Benjamin Lefrançois, William Thiaudière, Eric Franconi, Jean-Michel Miraux, Sylvain Water Selective Imaging and bSSFP Banding Artifact Correction in Humans and Small Animals at 3T and 7T, Respectively |
title | Water Selective Imaging and bSSFP Banding Artifact Correction in Humans and Small Animals at 3T and 7T, Respectively |
title_full | Water Selective Imaging and bSSFP Banding Artifact Correction in Humans and Small Animals at 3T and 7T, Respectively |
title_fullStr | Water Selective Imaging and bSSFP Banding Artifact Correction in Humans and Small Animals at 3T and 7T, Respectively |
title_full_unstemmed | Water Selective Imaging and bSSFP Banding Artifact Correction in Humans and Small Animals at 3T and 7T, Respectively |
title_short | Water Selective Imaging and bSSFP Banding Artifact Correction in Humans and Small Animals at 3T and 7T, Respectively |
title_sort | water selective imaging and bssfp banding artifact correction in humans and small animals at 3t and 7t, respectively |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591352/ https://www.ncbi.nlm.nih.gov/pubmed/26426849 http://dx.doi.org/10.1371/journal.pone.0139249 |
work_keys_str_mv | AT ribotemelinej waterselectiveimagingandbssfpbandingartifactcorrectioninhumansandsmallanimalsat3tand7trespectively AT weckerdidier waterselectiveimagingandbssfpbandingartifactcorrectioninhumansandsmallanimalsat3tand7trespectively AT trotieraurelienj waterselectiveimagingandbssfpbandingartifactcorrectioninhumansandsmallanimalsat3tand7trespectively AT dallaudierebenjamin waterselectiveimagingandbssfpbandingartifactcorrectioninhumansandsmallanimalsat3tand7trespectively AT lefrancoiswilliam waterselectiveimagingandbssfpbandingartifactcorrectioninhumansandsmallanimalsat3tand7trespectively AT thiaudiereeric waterselectiveimagingandbssfpbandingartifactcorrectioninhumansandsmallanimalsat3tand7trespectively AT franconijeanmichel waterselectiveimagingandbssfpbandingartifactcorrectioninhumansandsmallanimalsat3tand7trespectively AT mirauxsylvain waterselectiveimagingandbssfpbandingartifactcorrectioninhumansandsmallanimalsat3tand7trespectively |