Cargando…
Implementation of a spike-based perceptron learning rule using TiO(2−x) memristors
Synaptic plasticity plays a crucial role in allowing neural networks to learn and adapt to various input environments. Neuromorphic systems need to implement plastic synapses to obtain basic “cognitive” capabilities such as learning. One promising and scalable approach for implementing neuromorphic...
Autores principales: | Mostafa, Hesham, Khiat, Ali, Serb, Alexander, Mayr, Christian G., Indiveri, Giacomo, Prodromakis, Themis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591430/ https://www.ncbi.nlm.nih.gov/pubmed/26483629 http://dx.doi.org/10.3389/fnins.2015.00357 |
Ejemplares similares
-
Real-time encoding and compression of neuronal spikes by metal-oxide memristors
por: Gupta, Isha, et al.
Publicado: (2016) -
Seamlessly fused digital-analogue reconfigurable computing using memristors
por: Serb, Alexantrou, et al.
Publicado: (2018) -
Multibit memory operation of metal-oxide bi-layer memristors
por: Stathopoulos, Spyros, et al.
Publicado: (2017) -
Technology agnostic frequency characterization methodology for memristors
por: Manouras, Vasileios, et al.
Publicado: (2021) -
A memristor fingerprinting and characterisation methodology for hardware security
por: Aitchison, Callum, et al.
Publicado: (2023)