Cargando…
Liposomal n-butylidenephthalide protects the drug from oxidation and enhances its antitumor effects in glioblastoma multiforme
BACKGROUND: The natural compound n-butylidenephthalide (BP) can pass through the blood–brain barrier to inhibit the growth of glioblastoma multiforme tumors. However, BP has an unstable structure that reduces its antitumor activity and half-life in vivo. OBJECTIVE: The aim of this study is to design...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592058/ https://www.ncbi.nlm.nih.gov/pubmed/26451107 http://dx.doi.org/10.2147/IJN.S85790 |
_version_ | 1782393156690509824 |
---|---|
author | Lin, Yu-Ling Chang, Kai-Fu Huang, Xiao-Fan Hung, Che-Lun Chen, Shyh-Chang Chao, Wan-Ru Liao, Kuang-Wen Tsai, Nu-Man |
author_facet | Lin, Yu-Ling Chang, Kai-Fu Huang, Xiao-Fan Hung, Che-Lun Chen, Shyh-Chang Chao, Wan-Ru Liao, Kuang-Wen Tsai, Nu-Man |
author_sort | Lin, Yu-Ling |
collection | PubMed |
description | BACKGROUND: The natural compound n-butylidenephthalide (BP) can pass through the blood–brain barrier to inhibit the growth of glioblastoma multiforme tumors. However, BP has an unstable structure that reduces its antitumor activity and half-life in vivo. OBJECTIVE: The aim of this study is to design a drug delivery system to encapsulate BP to enhance its efficacy by improving its protection and delivery. METHODS: To protect its structural stability against protein-rich and peroxide solutions, BP was encapsulated into a lipo-PEG-PEI complex (LPPC). Then, the cytotoxicity of BP/LPPC following preincubation in protein-rich, acid/alkaline, and peroxide solutions was analyzed by MTT. Cell uptake of BP/LPPC was also measured by confocal microscopy. The therapeutic effects of BP/LPPC were analyzed in xenograft mice following intratumoral and intravenous injections. RESULTS: When BP was encapsulated in LPPC, its cytotoxicity was maintained following preincubation in protein-rich, acid/alkaline, and peroxide solutions. The cytotoxic activity of encapsulated BP was higher than that of free BP (~4.5- to 8.5-fold). This increased cytotoxic activity of BP/LPPC is attributable to its rapid transport across the cell membrane. In an animal study, a subcutaneously xenografted glioblastoma multiforme mouse that was treated with BP by intratumoral and intravenous administration showed inhibited tumor growth. The same dose of BP/LPPC was significantly more effective in terms of tumor inhibition. CONCLUSION: LPPC encapsulation technology is able to protect BP’s structural stability and enhance its antitumor effects, thus providing a better tool for use in cancer therapy. |
format | Online Article Text |
id | pubmed-4592058 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-45920582015-10-08 Liposomal n-butylidenephthalide protects the drug from oxidation and enhances its antitumor effects in glioblastoma multiforme Lin, Yu-Ling Chang, Kai-Fu Huang, Xiao-Fan Hung, Che-Lun Chen, Shyh-Chang Chao, Wan-Ru Liao, Kuang-Wen Tsai, Nu-Man Int J Nanomedicine Original Research BACKGROUND: The natural compound n-butylidenephthalide (BP) can pass through the blood–brain barrier to inhibit the growth of glioblastoma multiforme tumors. However, BP has an unstable structure that reduces its antitumor activity and half-life in vivo. OBJECTIVE: The aim of this study is to design a drug delivery system to encapsulate BP to enhance its efficacy by improving its protection and delivery. METHODS: To protect its structural stability against protein-rich and peroxide solutions, BP was encapsulated into a lipo-PEG-PEI complex (LPPC). Then, the cytotoxicity of BP/LPPC following preincubation in protein-rich, acid/alkaline, and peroxide solutions was analyzed by MTT. Cell uptake of BP/LPPC was also measured by confocal microscopy. The therapeutic effects of BP/LPPC were analyzed in xenograft mice following intratumoral and intravenous injections. RESULTS: When BP was encapsulated in LPPC, its cytotoxicity was maintained following preincubation in protein-rich, acid/alkaline, and peroxide solutions. The cytotoxic activity of encapsulated BP was higher than that of free BP (~4.5- to 8.5-fold). This increased cytotoxic activity of BP/LPPC is attributable to its rapid transport across the cell membrane. In an animal study, a subcutaneously xenografted glioblastoma multiforme mouse that was treated with BP by intratumoral and intravenous administration showed inhibited tumor growth. The same dose of BP/LPPC was significantly more effective in terms of tumor inhibition. CONCLUSION: LPPC encapsulation technology is able to protect BP’s structural stability and enhance its antitumor effects, thus providing a better tool for use in cancer therapy. Dove Medical Press 2015-09-28 /pmc/articles/PMC4592058/ /pubmed/26451107 http://dx.doi.org/10.2147/IJN.S85790 Text en © 2015 Lin et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Lin, Yu-Ling Chang, Kai-Fu Huang, Xiao-Fan Hung, Che-Lun Chen, Shyh-Chang Chao, Wan-Ru Liao, Kuang-Wen Tsai, Nu-Man Liposomal n-butylidenephthalide protects the drug from oxidation and enhances its antitumor effects in glioblastoma multiforme |
title | Liposomal n-butylidenephthalide protects the drug from oxidation and enhances its antitumor effects in glioblastoma multiforme |
title_full | Liposomal n-butylidenephthalide protects the drug from oxidation and enhances its antitumor effects in glioblastoma multiforme |
title_fullStr | Liposomal n-butylidenephthalide protects the drug from oxidation and enhances its antitumor effects in glioblastoma multiforme |
title_full_unstemmed | Liposomal n-butylidenephthalide protects the drug from oxidation and enhances its antitumor effects in glioblastoma multiforme |
title_short | Liposomal n-butylidenephthalide protects the drug from oxidation and enhances its antitumor effects in glioblastoma multiforme |
title_sort | liposomal n-butylidenephthalide protects the drug from oxidation and enhances its antitumor effects in glioblastoma multiforme |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592058/ https://www.ncbi.nlm.nih.gov/pubmed/26451107 http://dx.doi.org/10.2147/IJN.S85790 |
work_keys_str_mv | AT linyuling liposomalnbutylidenephthalideprotectsthedrugfromoxidationandenhancesitsantitumoreffectsinglioblastomamultiforme AT changkaifu liposomalnbutylidenephthalideprotectsthedrugfromoxidationandenhancesitsantitumoreffectsinglioblastomamultiforme AT huangxiaofan liposomalnbutylidenephthalideprotectsthedrugfromoxidationandenhancesitsantitumoreffectsinglioblastomamultiforme AT hungchelun liposomalnbutylidenephthalideprotectsthedrugfromoxidationandenhancesitsantitumoreffectsinglioblastomamultiforme AT chenshyhchang liposomalnbutylidenephthalideprotectsthedrugfromoxidationandenhancesitsantitumoreffectsinglioblastomamultiforme AT chaowanru liposomalnbutylidenephthalideprotectsthedrugfromoxidationandenhancesitsantitumoreffectsinglioblastomamultiforme AT liaokuangwen liposomalnbutylidenephthalideprotectsthedrugfromoxidationandenhancesitsantitumoreffectsinglioblastomamultiforme AT tsainuman liposomalnbutylidenephthalideprotectsthedrugfromoxidationandenhancesitsantitumoreffectsinglioblastomamultiforme |