Cargando…

Synergistic Gene Expression Signature Observed in TK6 Cells upon Co-Exposure to UVC-Irradiation and Protein Kinase C-Activating Tumor Promoters

Activation of stress response pathways in the tumor microenvironment can promote the development of cancer. However, little is known about the synergistic tumor promoting effects of stress response pathways simultaneously induced in the tumor microenvironment. Therefore, the purpose of this study wa...

Descripción completa

Detalles Bibliográficos
Autores principales: Glover, Kyle P., Chen, Zhongqiang, Markell, Lauren K., Han, Xing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592187/
https://www.ncbi.nlm.nih.gov/pubmed/26431317
http://dx.doi.org/10.1371/journal.pone.0139850
Descripción
Sumario:Activation of stress response pathways in the tumor microenvironment can promote the development of cancer. However, little is known about the synergistic tumor promoting effects of stress response pathways simultaneously induced in the tumor microenvironment. Therefore, the purpose of this study was to establish gene expression signatures representing the interaction of pathways deregulated by tumor promoting agents and pathways induced by DNA damage. Human lymphoblastoid TK6 cells were pretreated with the protein kinase C activating tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) and exposed to UVC-irradiation. The time and dose-responsive effects of the co-treatment were captured with RNA-sequencing (RNA-seq) in two separate experiments. TK6 cells exposed to both TPA and UVC had significantly more genes differentially regulated than the theoretical sum of genes induced by either stress alone, thus indicating a synergistic effect on global gene expression patterns. Further analysis revealed that TPA+UVC co-exposure caused synergistic perturbation of specific genes associated with p53, AP-1 and inflammatory pathways important in carcinogenesis. The 17 gene signature derived from this model was confirmed with other PKC-activating tumor promoters including phorbol-12,13-dibutyrate, sapintoxin D, mezerein, (-)-Indolactam V and resiniferonol 9,13,14-ortho-phenylacetate (ROPA) with quantitative real-time PCR (QPCR). Here we show a novel gene signature that may represent a synergistic interaction in the tumor microenvironment that is relevant to the mechanisms of chemical induced tumor promotion.