Cargando…
Integrating Multiple Evidence Sources to Predict Adverse Drug Reactions Based on a Systems Pharmacology Model
Identifying potential adverse drug reactions (ADRs) is critically important for drug discovery and public health. Here we developed a multiple evidence fusion (MEF) method for the large-scale prediction of drug ADRs that can handle both approved drugs and novel molecules. MEF is based on the similar...
Autores principales: | Cao, D-S, Xiao, N, Li, Y-J, Zeng, W-B, Liang, Y-Z, Lu, A-P, Xu, Q-S, Chen, AF |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Ltd
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592529/ https://www.ncbi.nlm.nih.gov/pubmed/26451329 http://dx.doi.org/10.1002/psp4.12002 |
Ejemplares similares
-
Predicting adverse drug reactions of combined medication from heterogeneous pharmacologic databases
por: Zheng, Yi, et al.
Publicado: (2018) -
Machine learning guided association of adverse drug reactions with in vitro target-based pharmacology
por: Ietswaart, Robert, et al.
Publicado: (2020) -
A preclinical secondary pharmacology resource illuminates target-adverse drug reaction associations of marketed drugs
por: Sutherland, Jeffrey J., et al.
Publicado: (2023) -
Multiple drug hypersensitivity associated with severe cutaneous adverse reaction
por: Lin Choo, Karen Jui, et al.
Publicado: (2014) -
Adverse Drug Reactions
por: Turner, Paul
Publicado: (1988)