Cargando…
Ensemble Learning of QTL Models Improves Prediction of Complex Traits
Quantitative trait locus (QTL) models can provide useful insights into trait genetic architecture because of their straightforward interpretability but are less useful for genetic prediction because of the difficulty in including the effects of numerous small effect loci without overfitting. Tight l...
Autores principales: | Bian, Yang, Holland, James B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592990/ https://www.ncbi.nlm.nih.gov/pubmed/26276383 http://dx.doi.org/10.1534/g3.115.021121 |
Ejemplares similares
-
Novel Resampling Improves Statistical Power for Multiple-Trait QTL Mapping
por: Cheng, Riyan, et al.
Publicado: (2017) -
QTL Controlling Masculinization of Ear Tips in a Maize (Zea mays L.) Intraspecific Cross
por: Holland, James B., et al.
Publicado: (2011) -
Examining the Impact of Imputation Errors on Fine-Mapping Using DNA Methylation QTL as a Model Trait
por: Chundru, V. Kartik, et al.
Publicado: (2019) -
Harnessing multivariate, penalized regression methods for genomic prediction and QTL detection of drought-related traits in grapevine
por: Brault, Charlotte, et al.
Publicado: (2021) -
QTL mapping for bioenergy traits in sweet sorghum recombinant inbred lines
por: de Souza, Vander Fillipe, et al.
Publicado: (2021)