Cargando…

Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression

Most genomic-enabled prediction models developed so far assume that the response variable is continuous and normally distributed. The exception is the probit model, developed for ordered categorical phenotypes. In statistical applications, because of the easy implementation of the Bayesian probit or...

Descripción completa

Detalles Bibliográficos
Autores principales: Montesinos-López, Osval A., Montesinos-López, Abelardo, Crossa, José, Burgueño, Juan, Eskridge, Kent
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592994/
https://www.ncbi.nlm.nih.gov/pubmed/26290569
http://dx.doi.org/10.1534/g3.115.021154
_version_ 1782393267810205696
author Montesinos-López, Osval A.
Montesinos-López, Abelardo
Crossa, José
Burgueño, Juan
Eskridge, Kent
author_facet Montesinos-López, Osval A.
Montesinos-López, Abelardo
Crossa, José
Burgueño, Juan
Eskridge, Kent
author_sort Montesinos-López, Osval A.
collection PubMed
description Most genomic-enabled prediction models developed so far assume that the response variable is continuous and normally distributed. The exception is the probit model, developed for ordered categorical phenotypes. In statistical applications, because of the easy implementation of the Bayesian probit ordinal regression (BPOR) model, Bayesian logistic ordinal regression (BLOR) is implemented rarely in the context of genomic-enabled prediction [sample size (n) is much smaller than the number of parameters (p)]. For this reason, in this paper we propose a BLOR model using the Pólya-Gamma data augmentation approach that produces a Gibbs sampler with similar full conditional distributions of the BPOR model and with the advantage that the BPOR model is a particular case of the BLOR model. We evaluated the proposed model by using simulation and two real data sets. Results indicate that our BLOR model is a good alternative for analyzing ordinal data in the context of genomic-enabled prediction with the probit or logit link.
format Online
Article
Text
id pubmed-4592994
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Genetics Society of America
record_format MEDLINE/PubMed
spelling pubmed-45929942015-10-15 Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression Montesinos-López, Osval A. Montesinos-López, Abelardo Crossa, José Burgueño, Juan Eskridge, Kent G3 (Bethesda) Genomic Selection Most genomic-enabled prediction models developed so far assume that the response variable is continuous and normally distributed. The exception is the probit model, developed for ordered categorical phenotypes. In statistical applications, because of the easy implementation of the Bayesian probit ordinal regression (BPOR) model, Bayesian logistic ordinal regression (BLOR) is implemented rarely in the context of genomic-enabled prediction [sample size (n) is much smaller than the number of parameters (p)]. For this reason, in this paper we propose a BLOR model using the Pólya-Gamma data augmentation approach that produces a Gibbs sampler with similar full conditional distributions of the BPOR model and with the advantage that the BPOR model is a particular case of the BLOR model. We evaluated the proposed model by using simulation and two real data sets. Results indicate that our BLOR model is a good alternative for analyzing ordinal data in the context of genomic-enabled prediction with the probit or logit link. Genetics Society of America 2015-08-18 /pmc/articles/PMC4592994/ /pubmed/26290569 http://dx.doi.org/10.1534/g3.115.021154 Text en Copyright © 2015 Montesinos-López et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Genomic Selection
Montesinos-López, Osval A.
Montesinos-López, Abelardo
Crossa, José
Burgueño, Juan
Eskridge, Kent
Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression
title Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression
title_full Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression
title_fullStr Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression
title_full_unstemmed Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression
title_short Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression
title_sort genomic-enabled prediction of ordinal data with bayesian logistic ordinal regression
topic Genomic Selection
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592994/
https://www.ncbi.nlm.nih.gov/pubmed/26290569
http://dx.doi.org/10.1534/g3.115.021154
work_keys_str_mv AT montesinoslopezosvala genomicenabledpredictionofordinaldatawithbayesianlogisticordinalregression
AT montesinoslopezabelardo genomicenabledpredictionofordinaldatawithbayesianlogisticordinalregression
AT crossajose genomicenabledpredictionofordinaldatawithbayesianlogisticordinalregression
AT burguenojuan genomicenabledpredictionofordinaldatawithbayesianlogisticordinalregression
AT eskridgekent genomicenabledpredictionofordinaldatawithbayesianlogisticordinalregression