Cargando…
Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression
Most genomic-enabled prediction models developed so far assume that the response variable is continuous and normally distributed. The exception is the probit model, developed for ordered categorical phenotypes. In statistical applications, because of the easy implementation of the Bayesian probit or...
Autores principales: | Montesinos-López, Osval A., Montesinos-López, Abelardo, Crossa, José, Burgueño, Juan, Eskridge, Kent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4592994/ https://www.ncbi.nlm.nih.gov/pubmed/26290569 http://dx.doi.org/10.1534/g3.115.021154 |
Ejemplares similares
-
Threshold Models for Genome-Enabled Prediction of Ordinal Categorical Traits in Plant Breeding
por: Montesinos-López, Osval A., et al.
Publicado: (2014) -
Genomic Bayesian Prediction Model for Count Data with Genotype × Environment Interaction
por: Montesinos-López, Abelardo, et al.
Publicado: (2016) -
Maximum a posteriori Threshold Genomic Prediction Model for Ordinal Traits
por: Montesinos-López, Abelardo, et al.
Publicado: (2020) -
A Genomic Bayesian Multi-trait and Multi-environment Model
por: Montesinos-López, Osval A., et al.
Publicado: (2016) -
New Deep Learning Genomic-Based Prediction Model for Multiple Traits with Binary, Ordinal, and Continuous Phenotypes
por: Montesinos-López, Osval A., et al.
Publicado: (2019)