Cargando…

Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation

A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS...

Descripción completa

Detalles Bibliográficos
Autores principales: Lefler, Sharon, Cohen, Malkiel A., Kantor, Gal, Cheishvili, David, Even, Aviel, Birger, Anastasya, Turetsky, Tikva, Gil, Yaniv, Even-Ram, Sharona, Aizenman, Einat, Bashir, Nibal, Maayan, Channa, Razin, Aharon, Reubinoff, Benjamim E., Weil, Miguel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4593545/
https://www.ncbi.nlm.nih.gov/pubmed/26437462
http://dx.doi.org/10.1371/journal.pone.0138807
_version_ 1782393336749883392
author Lefler, Sharon
Cohen, Malkiel A.
Kantor, Gal
Cheishvili, David
Even, Aviel
Birger, Anastasya
Turetsky, Tikva
Gil, Yaniv
Even-Ram, Sharona
Aizenman, Einat
Bashir, Nibal
Maayan, Channa
Razin, Aharon
Reubinoff, Benjamim E.
Weil, Miguel
author_facet Lefler, Sharon
Cohen, Malkiel A.
Kantor, Gal
Cheishvili, David
Even, Aviel
Birger, Anastasya
Turetsky, Tikva
Gil, Yaniv
Even-Ram, Sharona
Aizenman, Einat
Bashir, Nibal
Maayan, Channa
Razin, Aharon
Reubinoff, Benjamim E.
Weil, Miguel
author_sort Lefler, Sharon
collection PubMed
description A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC) line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD) analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC) while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing) promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD.
format Online
Article
Text
id pubmed-4593545
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-45935452015-10-14 Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation Lefler, Sharon Cohen, Malkiel A. Kantor, Gal Cheishvili, David Even, Aviel Birger, Anastasya Turetsky, Tikva Gil, Yaniv Even-Ram, Sharona Aizenman, Einat Bashir, Nibal Maayan, Channa Razin, Aharon Reubinoff, Benjamim E. Weil, Miguel PLoS One Research Article A splicing mutation in the IKBKAP gene causes Familial Dysautonomia (FD), affecting the IKAP protein expression levels and proper development and function of the peripheral nervous system (PNS). Here we found new molecular insights for the IKAP role and the impact of the FD mutation in the human PNS lineage by using a novel and unique human embryonic stem cell (hESC) line homozygous to the FD mutation originated by pre implantation genetic diagnosis (PGD) analysis. We found that IKBKAP downregulation during PNS differentiation affects normal migration in FD-hESC derived neural crest cells (NCC) while at later stages the PNS neurons show reduced intracellular colocalization between vesicular proteins and IKAP. Comparative wide transcriptome analysis of FD and WT hESC-derived neurons together with the analysis of human brains from FD and WT 12 weeks old embryos and experimental validation of the results confirmed that synaptic vesicular and neuronal transport genes are directly or indirectly affected by IKBKAP downregulation in FD neurons. Moreover we show that kinetin (a drug that corrects IKBKAP alternative splicing) promotes the recovery of IKAP expression and these IKAP functional associated genes identified in the study. Altogether, these results support the view that IKAP might be a vesicular like protein that might be involved in neuronal transport in hESC derived PNS neurons. This function seems to be mostly affected in FD-hESC derived PNS neurons probably reflecting some PNS neuronal dysfunction observed in FD. Public Library of Science 2015-10-05 /pmc/articles/PMC4593545/ /pubmed/26437462 http://dx.doi.org/10.1371/journal.pone.0138807 Text en © 2015 Lefler et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Lefler, Sharon
Cohen, Malkiel A.
Kantor, Gal
Cheishvili, David
Even, Aviel
Birger, Anastasya
Turetsky, Tikva
Gil, Yaniv
Even-Ram, Sharona
Aizenman, Einat
Bashir, Nibal
Maayan, Channa
Razin, Aharon
Reubinoff, Benjamim E.
Weil, Miguel
Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation
title Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation
title_full Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation
title_fullStr Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation
title_full_unstemmed Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation
title_short Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation
title_sort familial dysautonomia (fd) human embryonic stem cell derived pns neurons reveal that synaptic vesicular and neuronal transport genes are directly or indirectly affected by ikbkap downregulation
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4593545/
https://www.ncbi.nlm.nih.gov/pubmed/26437462
http://dx.doi.org/10.1371/journal.pone.0138807
work_keys_str_mv AT leflersharon familialdysautonomiafdhumanembryonicstemcellderivedpnsneuronsrevealthatsynapticvesicularandneuronaltransportgenesaredirectlyorindirectlyaffectedbyikbkapdownregulation
AT cohenmalkiela familialdysautonomiafdhumanembryonicstemcellderivedpnsneuronsrevealthatsynapticvesicularandneuronaltransportgenesaredirectlyorindirectlyaffectedbyikbkapdownregulation
AT kantorgal familialdysautonomiafdhumanembryonicstemcellderivedpnsneuronsrevealthatsynapticvesicularandneuronaltransportgenesaredirectlyorindirectlyaffectedbyikbkapdownregulation
AT cheishvilidavid familialdysautonomiafdhumanembryonicstemcellderivedpnsneuronsrevealthatsynapticvesicularandneuronaltransportgenesaredirectlyorindirectlyaffectedbyikbkapdownregulation
AT evenaviel familialdysautonomiafdhumanembryonicstemcellderivedpnsneuronsrevealthatsynapticvesicularandneuronaltransportgenesaredirectlyorindirectlyaffectedbyikbkapdownregulation
AT birgeranastasya familialdysautonomiafdhumanembryonicstemcellderivedpnsneuronsrevealthatsynapticvesicularandneuronaltransportgenesaredirectlyorindirectlyaffectedbyikbkapdownregulation
AT turetskytikva familialdysautonomiafdhumanembryonicstemcellderivedpnsneuronsrevealthatsynapticvesicularandneuronaltransportgenesaredirectlyorindirectlyaffectedbyikbkapdownregulation
AT gilyaniv familialdysautonomiafdhumanembryonicstemcellderivedpnsneuronsrevealthatsynapticvesicularandneuronaltransportgenesaredirectlyorindirectlyaffectedbyikbkapdownregulation
AT evenramsharona familialdysautonomiafdhumanembryonicstemcellderivedpnsneuronsrevealthatsynapticvesicularandneuronaltransportgenesaredirectlyorindirectlyaffectedbyikbkapdownregulation
AT aizenmaneinat familialdysautonomiafdhumanembryonicstemcellderivedpnsneuronsrevealthatsynapticvesicularandneuronaltransportgenesaredirectlyorindirectlyaffectedbyikbkapdownregulation
AT bashirnibal familialdysautonomiafdhumanembryonicstemcellderivedpnsneuronsrevealthatsynapticvesicularandneuronaltransportgenesaredirectlyorindirectlyaffectedbyikbkapdownregulation
AT maayanchanna familialdysautonomiafdhumanembryonicstemcellderivedpnsneuronsrevealthatsynapticvesicularandneuronaltransportgenesaredirectlyorindirectlyaffectedbyikbkapdownregulation
AT razinaharon familialdysautonomiafdhumanembryonicstemcellderivedpnsneuronsrevealthatsynapticvesicularandneuronaltransportgenesaredirectlyorindirectlyaffectedbyikbkapdownregulation
AT reubinoffbenjamime familialdysautonomiafdhumanembryonicstemcellderivedpnsneuronsrevealthatsynapticvesicularandneuronaltransportgenesaredirectlyorindirectlyaffectedbyikbkapdownregulation
AT weilmiguel familialdysautonomiafdhumanembryonicstemcellderivedpnsneuronsrevealthatsynapticvesicularandneuronaltransportgenesaredirectlyorindirectlyaffectedbyikbkapdownregulation