Cargando…
Distributed encoding of spatial and object categories in primate hippocampal microcircuits
The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categori...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594006/ https://www.ncbi.nlm.nih.gov/pubmed/26500473 http://dx.doi.org/10.3389/fnins.2015.00317 |
_version_ | 1782393393326850048 |
---|---|
author | Opris, Ioan Santos, Lucas M. Gerhardt, Greg A. Song, Dong Berger, Theodore W. Hampson, Robert E. Deadwyler, Sam A. |
author_facet | Opris, Ioan Santos, Lucas M. Gerhardt, Greg A. Song, Dong Berger, Theodore W. Hampson, Robert E. Deadwyler, Sam A. |
author_sort | Opris, Ioan |
collection | PubMed |
description | The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics. |
format | Online Article Text |
id | pubmed-4594006 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-45940062015-10-23 Distributed encoding of spatial and object categories in primate hippocampal microcircuits Opris, Ioan Santos, Lucas M. Gerhardt, Greg A. Song, Dong Berger, Theodore W. Hampson, Robert E. Deadwyler, Sam A. Front Neurosci Neuroscience The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics. Frontiers Media S.A. 2015-10-06 /pmc/articles/PMC4594006/ /pubmed/26500473 http://dx.doi.org/10.3389/fnins.2015.00317 Text en Copyright © 2015 Opris, Santos, Gerhardt, Song, Berger, Hampson and Deadwyler. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Opris, Ioan Santos, Lucas M. Gerhardt, Greg A. Song, Dong Berger, Theodore W. Hampson, Robert E. Deadwyler, Sam A. Distributed encoding of spatial and object categories in primate hippocampal microcircuits |
title | Distributed encoding of spatial and object categories in primate hippocampal microcircuits |
title_full | Distributed encoding of spatial and object categories in primate hippocampal microcircuits |
title_fullStr | Distributed encoding of spatial and object categories in primate hippocampal microcircuits |
title_full_unstemmed | Distributed encoding of spatial and object categories in primate hippocampal microcircuits |
title_short | Distributed encoding of spatial and object categories in primate hippocampal microcircuits |
title_sort | distributed encoding of spatial and object categories in primate hippocampal microcircuits |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594006/ https://www.ncbi.nlm.nih.gov/pubmed/26500473 http://dx.doi.org/10.3389/fnins.2015.00317 |
work_keys_str_mv | AT oprisioan distributedencodingofspatialandobjectcategoriesinprimatehippocampalmicrocircuits AT santoslucasm distributedencodingofspatialandobjectcategoriesinprimatehippocampalmicrocircuits AT gerhardtgrega distributedencodingofspatialandobjectcategoriesinprimatehippocampalmicrocircuits AT songdong distributedencodingofspatialandobjectcategoriesinprimatehippocampalmicrocircuits AT bergertheodorew distributedencodingofspatialandobjectcategoriesinprimatehippocampalmicrocircuits AT hampsonroberte distributedencodingofspatialandobjectcategoriesinprimatehippocampalmicrocircuits AT deadwylersama distributedencodingofspatialandobjectcategoriesinprimatehippocampalmicrocircuits |