Cargando…
Aberrant intra- and inter-network connectivity architectures in Alzheimer’s disease and mild cognitive impairment
Alzheimer’s disease (AD) patients and those with high-risk mild cognitive impairment are increasingly considered to have dysfunction syndromes. Large-scale network studies based on neuroimaging techniques may provide additional insight into AD pathophysiology. The aim of the present study is to eval...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594099/ https://www.ncbi.nlm.nih.gov/pubmed/26439278 http://dx.doi.org/10.1038/srep14824 |
Sumario: | Alzheimer’s disease (AD) patients and those with high-risk mild cognitive impairment are increasingly considered to have dysfunction syndromes. Large-scale network studies based on neuroimaging techniques may provide additional insight into AD pathophysiology. The aim of the present study is to evaluate the impaired network functional connectivity with the disease progression. For this purpose, we explored altered functional connectivities based on previously well-defined brain areas that comprise the five key functional systems [the default mode network (DMN), dorsal attention network (DAN), control network (CON), salience network (SAL), sensorimotor network (SMN)] in 35 with AD and 27 with mild cognitive impairment (MCI) subjects, compared with 27 normal cognitive subjects. Based on three levels of analysis, we found that intra- and inter-network connectivity were impaired in AD. Importantly, the interaction between the sensorimotor and attention functions was first attacked at the MCI stage and then extended to the key functional systems in the AD individuals. Lower cognitive ability (lower MMSE scores) was significantly associated with greater reductions in intra- and inter-network connectivity across all patient groups. These profiles indicate that aberrant intra- and inter-network dysfunctions might be potential biomarkers or predictors of AD progression and provide new insight into AD pathophysiology. |
---|