Cargando…
Getting to the root of plant iron uptake and cell-cell transport: Polarity matters!
Plasma membrane proteins play pivotal roles in mediating responses to endogenous and environmental cues. Regulation of membrane protein levels and establishment of polarity are fundamental for many cellular processes. In plants, IRON-REGULATED TRANSPORTER 1 (IRT1) is the major root iron transporter...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594254/ https://www.ncbi.nlm.nih.gov/pubmed/26479146 http://dx.doi.org/10.1080/19420889.2015.1038441 |
Sumario: | Plasma membrane proteins play pivotal roles in mediating responses to endogenous and environmental cues. Regulation of membrane protein levels and establishment of polarity are fundamental for many cellular processes. In plants, IRON-REGULATED TRANSPORTER 1 (IRT1) is the major root iron transporter but is also responsible for the absorption of other divalent metals such as manganese, zinc and cobalt. We recently uncovered that IRT1 is polarly localized to the outer plasma membrane domain of plant root epidermal cells upon depletion of its secondary metal substrates. The endosome-recruited FYVE1 protein interacts with IRT1 in the endocytic pathway and plays a crucial role in the establishment of IRT1 polarity, likely through its recycling to the cell surface. Our work sheds light on the mechanisms of radial transport of nutrients across the different cell types of plant roots toward the vascular tissues and raises interesting parallel with iron transport in mammals. |
---|