Cargando…
Autopoiesis + extended cognition + nature = can buildings think?
To incorporate metabolic, bioremedial functions into the performance of buildings and to balance generative architecture's dominant focus on computational programming and digital fabrication, this text first discusses hybridizing Maturana and Varela's biological theory of autopoiesis with...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594259/ https://www.ncbi.nlm.nih.gov/pubmed/26478784 http://dx.doi.org/10.4161/19420889.2014.994373 |
Sumario: | To incorporate metabolic, bioremedial functions into the performance of buildings and to balance generative architecture's dominant focus on computational programming and digital fabrication, this text first discusses hybridizing Maturana and Varela's biological theory of autopoiesis with Andy Clark's hypothesis of extended cognition. Doing so establishes a procedural protocol to research biological domains from which design could source data/insight from biosemiotics, sensory plants, and biocomputation. I trace computation and botanic simulations back to Alan Turing's little-known 1950s Morphogenetic drawings, reaction-diffusion algorithms, and pioneering artificial intelligence (AI) in order to establish bioarchitecture's generative point of origin. I ask provocatively, Can buildings think? as a question echoing Turing's own, "Can machines think?" |
---|