Cargando…
Dynamic buckling of actin within filopodia
Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted on exte...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594262/ https://www.ncbi.nlm.nih.gov/pubmed/26479403 http://dx.doi.org/10.1080/19420889.2015.1022010 |
_version_ | 1782393428777107456 |
---|---|
author | Leijnse, Natascha Oddershede, Lene B Bendix, Poul M |
author_facet | Leijnse, Natascha Oddershede, Lene B Bendix, Poul M |
author_sort | Leijnse, Natascha |
collection | PubMed |
description | Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted on external substrates.(1) These studies have revealed that internal actin flow can transduce a force across the cell surface through transmembrane linkers like integrins. In addition to the elongation-retraction behavior filopodia also exhibit a buckling and rotational behavior. Filopodial buckling in conjunction with rotation enables the cell to explore a much larger 3-dimensional space and allows for more complex, and possibly stronger, interactions with the external environment.(2) Here we focus on how bending of the filopodial actin dynamically correlates with pulling on an optically trapped microsphere which acts like an external substrate attached to the filopodial tip. There is a clear correlation between presence of actin near the tip and exertion of a traction force, thus demonstrating that the traction force is transduced along the actin shaft inside the filopodium. By extending a filopodium and holding it while measuring the cellular response, we also monitor and analyze the waiting times for the first buckle observed in the fluorescently labeled actin shaft. |
format | Online Article Text |
id | pubmed-4594262 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Taylor & Francis |
record_format | MEDLINE/PubMed |
spelling | pubmed-45942622015-10-16 Dynamic buckling of actin within filopodia Leijnse, Natascha Oddershede, Lene B Bendix, Poul M Commun Integr Biol Article Addendum Filopodia are active tubular structures protruding from the cell surface which allow the cell to sense and interact with the surrounding environment through repetitive elongation-retraction cycles. The mechanical behavior of filopodia has been studied by measuring the traction forces exerted on external substrates.(1) These studies have revealed that internal actin flow can transduce a force across the cell surface through transmembrane linkers like integrins. In addition to the elongation-retraction behavior filopodia also exhibit a buckling and rotational behavior. Filopodial buckling in conjunction with rotation enables the cell to explore a much larger 3-dimensional space and allows for more complex, and possibly stronger, interactions with the external environment.(2) Here we focus on how bending of the filopodial actin dynamically correlates with pulling on an optically trapped microsphere which acts like an external substrate attached to the filopodial tip. There is a clear correlation between presence of actin near the tip and exertion of a traction force, thus demonstrating that the traction force is transduced along the actin shaft inside the filopodium. By extending a filopodium and holding it while measuring the cellular response, we also monitor and analyze the waiting times for the first buckle observed in the fluorescently labeled actin shaft. Taylor & Francis 2015-04-29 /pmc/articles/PMC4594262/ /pubmed/26479403 http://dx.doi.org/10.1080/19420889.2015.1022010 Text en © 2015 The Author(s). Published with license by Taylor & Francis Group, LLC http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted. |
spellingShingle | Article Addendum Leijnse, Natascha Oddershede, Lene B Bendix, Poul M Dynamic buckling of actin within filopodia |
title | Dynamic buckling of actin within filopodia |
title_full | Dynamic buckling of actin within filopodia |
title_fullStr | Dynamic buckling of actin within filopodia |
title_full_unstemmed | Dynamic buckling of actin within filopodia |
title_short | Dynamic buckling of actin within filopodia |
title_sort | dynamic buckling of actin within filopodia |
topic | Article Addendum |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594262/ https://www.ncbi.nlm.nih.gov/pubmed/26479403 http://dx.doi.org/10.1080/19420889.2015.1022010 |
work_keys_str_mv | AT leijnsenatascha dynamicbucklingofactinwithinfilopodia AT oddershedeleneb dynamicbucklingofactinwithinfilopodia AT bendixpoulm dynamicbucklingofactinwithinfilopodia |