Cargando…

Potential impact of gene regulatory mechanisms on the evolution of multicellularity in the volvocine algae

A fundamental question in biology is how multicellular organisms can arise from their single-celled precursors. The evolution of multicellularity requires the adoption of new traits in unicellular ancestors that allows the generation of form by, for example, increasing the size and developing new ce...

Descripción completa

Detalles Bibliográficos
Autor principal: Kianianmomeni, Arash
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4594364/
https://www.ncbi.nlm.nih.gov/pubmed/26479715
http://dx.doi.org/10.1080/19420889.2015.1017175
Descripción
Sumario:A fundamental question in biology is how multicellular organisms can arise from their single-celled precursors. The evolution of multicellularity requires the adoption of new traits in unicellular ancestors that allows the generation of form by, for example, increasing the size and developing new cell types. But what are the genetic, cellular and biochemical bases underlying the evolution of multicellularity? Recent advances in evolutionary developmental biology suggest that the regulation of gene expression by cis-regulatory factors, gene duplication and alternative splicing contribute to phenotypic evolution. These mechanisms enable different degrees of phenotypic divergence and complexity with variation in traits from genomes with similar gene contents. In addition, signaling pathways specific to cell types are developed to guarantee the modulation of cellular and developmental processes matched to the cell types as well as the maintenance of multicellularity.