Cargando…

Intranasal administration of poly-gamma glutamate induced antiviral activity and protective immune responses against H1N1 influenza A virus infection

BACKGROUND: The global outbreak of a novel swine-origin strain of the 2009 H1N1 influenza A virus and the sudden, worldwide increase in oseltamivir-resistant H1N1 influenza A viruses highlight the urgent need for novel antiviral therapy. METHODS: Here, we investigated the antiviral efficacy of poly-...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Eun-Ha, Choi, Young-Ki, Kim, Chul-Joong, Sung, Moon-Hee, Poo, Haryoung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4595321/
https://www.ncbi.nlm.nih.gov/pubmed/26437715
http://dx.doi.org/10.1186/s12985-015-0387-0
Descripción
Sumario:BACKGROUND: The global outbreak of a novel swine-origin strain of the 2009 H1N1 influenza A virus and the sudden, worldwide increase in oseltamivir-resistant H1N1 influenza A viruses highlight the urgent need for novel antiviral therapy. METHODS: Here, we investigated the antiviral efficacy of poly-gamma glutamate (γ-PGA), a safe and edible biomaterial that is naturally synthesized by Bacillus subtilis, against A/Puerto Rico/8/1934 (PR8) and A/California/04/2009 (CA04) H1N1 influenza A virus infections in C57BL/6 mice. RESULTS: Intranasal administration of γ-PGA for 5 days post-infection improved survival, increased production of antiviral cytokines including interferon-beta (IFN-β) and interleukin-12 (IL-12), and enhanced activation of natural killer (NK) cells and influenza antigen-specific cytotoxic T lymphocytes (CTL) activity. CONCLUSIONS: These results suggest that γ-PGA protects mice against H1N1 influenza A virus by enhancing antiviral immune responses.