Cargando…

Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides

The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials i...

Descripción completa

Detalles Bibliográficos
Autores principales: Moody, Galan, Kavir Dass, Chandriker, Hao, Kai, Chen, Chang-Hsiao, Li, Lain-Jong, Singh, Akshay, Tran, Kha, Clark, Genevieve, Xu, Xiaodong, Berghäuser, Gunnar, Malic, Ermin, Knorr, Andreas, Li, Xiaoqin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4595717/
https://www.ncbi.nlm.nih.gov/pubmed/26382305
http://dx.doi.org/10.1038/ncomms9315
_version_ 1782393654166421504
author Moody, Galan
Kavir Dass, Chandriker
Hao, Kai
Chen, Chang-Hsiao
Li, Lain-Jong
Singh, Akshay
Tran, Kha
Clark, Genevieve
Xu, Xiaodong
Berghäuser, Gunnar
Malic, Ermin
Knorr, Andreas
Li, Xiaoqin
author_facet Moody, Galan
Kavir Dass, Chandriker
Hao, Kai
Chen, Chang-Hsiao
Li, Lain-Jong
Singh, Akshay
Tran, Kha
Clark, Genevieve
Xu, Xiaodong
Berghäuser, Gunnar
Malic, Ermin
Knorr, Andreas
Li, Xiaoqin
author_sort Moody, Galan
collection PubMed
description The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe(2)). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors.
format Online
Article
Text
id pubmed-4595717
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-45957172015-10-21 Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides Moody, Galan Kavir Dass, Chandriker Hao, Kai Chen, Chang-Hsiao Li, Lain-Jong Singh, Akshay Tran, Kha Clark, Genevieve Xu, Xiaodong Berghäuser, Gunnar Malic, Ermin Knorr, Andreas Li, Xiaoqin Nat Commun Article The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe(2)). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors. Nature Pub. Group 2015-09-18 /pmc/articles/PMC4595717/ /pubmed/26382305 http://dx.doi.org/10.1038/ncomms9315 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Moody, Galan
Kavir Dass, Chandriker
Hao, Kai
Chen, Chang-Hsiao
Li, Lain-Jong
Singh, Akshay
Tran, Kha
Clark, Genevieve
Xu, Xiaodong
Berghäuser, Gunnar
Malic, Ermin
Knorr, Andreas
Li, Xiaoqin
Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides
title Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides
title_full Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides
title_fullStr Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides
title_full_unstemmed Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides
title_short Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides
title_sort intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4595717/
https://www.ncbi.nlm.nih.gov/pubmed/26382305
http://dx.doi.org/10.1038/ncomms9315
work_keys_str_mv AT moodygalan intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides
AT kavirdasschandriker intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides
AT haokai intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides
AT chenchanghsiao intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides
AT lilainjong intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides
AT singhakshay intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides
AT trankha intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides
AT clarkgenevieve intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides
AT xuxiaodong intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides
AT berghausergunnar intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides
AT malicermin intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides
AT knorrandreas intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides
AT lixiaoqin intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides