Cargando…
Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides
The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials i...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4595717/ https://www.ncbi.nlm.nih.gov/pubmed/26382305 http://dx.doi.org/10.1038/ncomms9315 |
_version_ | 1782393654166421504 |
---|---|
author | Moody, Galan Kavir Dass, Chandriker Hao, Kai Chen, Chang-Hsiao Li, Lain-Jong Singh, Akshay Tran, Kha Clark, Genevieve Xu, Xiaodong Berghäuser, Gunnar Malic, Ermin Knorr, Andreas Li, Xiaoqin |
author_facet | Moody, Galan Kavir Dass, Chandriker Hao, Kai Chen, Chang-Hsiao Li, Lain-Jong Singh, Akshay Tran, Kha Clark, Genevieve Xu, Xiaodong Berghäuser, Gunnar Malic, Ermin Knorr, Andreas Li, Xiaoqin |
author_sort | Moody, Galan |
collection | PubMed |
description | The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe(2)). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors. |
format | Online Article Text |
id | pubmed-4595717 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-45957172015-10-21 Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides Moody, Galan Kavir Dass, Chandriker Hao, Kai Chen, Chang-Hsiao Li, Lain-Jong Singh, Akshay Tran, Kha Clark, Genevieve Xu, Xiaodong Berghäuser, Gunnar Malic, Ermin Knorr, Andreas Li, Xiaoqin Nat Commun Article The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe(2)). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors. Nature Pub. Group 2015-09-18 /pmc/articles/PMC4595717/ /pubmed/26382305 http://dx.doi.org/10.1038/ncomms9315 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Moody, Galan Kavir Dass, Chandriker Hao, Kai Chen, Chang-Hsiao Li, Lain-Jong Singh, Akshay Tran, Kha Clark, Genevieve Xu, Xiaodong Berghäuser, Gunnar Malic, Ermin Knorr, Andreas Li, Xiaoqin Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides |
title | Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides |
title_full | Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides |
title_fullStr | Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides |
title_full_unstemmed | Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides |
title_short | Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides |
title_sort | intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4595717/ https://www.ncbi.nlm.nih.gov/pubmed/26382305 http://dx.doi.org/10.1038/ncomms9315 |
work_keys_str_mv | AT moodygalan intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides AT kavirdasschandriker intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides AT haokai intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides AT chenchanghsiao intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides AT lilainjong intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides AT singhakshay intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides AT trankha intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides AT clarkgenevieve intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides AT xuxiaodong intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides AT berghausergunnar intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides AT malicermin intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides AT knorrandreas intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides AT lixiaoqin intrinsichomogeneouslinewidthandbroadeningmechanismsofexcitonsinmonolayertransitionmetaldichalcogenides |