Cargando…
Unsupervised invariance learning of transformation sequences in a model of object recognition yields selectivity for non-accidental properties
Non-accidental properties (NAPs) correspond to image properties that are invariant to changes in viewpoint (e.g., straight vs. curved contours) and are distinguished from metric properties (MPs) that can change continuously with in-depth object rotation (e.g., aspect ratio, degree of curvature, etc....
Autores principales: | Parker, Sarah M., Serre, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4595784/ https://www.ncbi.nlm.nih.gov/pubmed/26500528 http://dx.doi.org/10.3389/fncom.2015.00115 |
Ejemplares similares
-
Learning Invariant Object and Spatial View Representations in the Brain Using Slow Unsupervised Learning
por: Rolls, Edmund T.
Publicado: (2021) -
Learning view invariant recognition with partially occluded objects
por: Tromans, James M., et al.
Publicado: (2012) -
Neural Representations that Support Invariant Object Recognition
por: Goris, Robbe L. T., et al.
Publicado: (2009) -
Invariant object recognition based on extended fragments
por: Bart, Evgeniy, et al.
Publicado: (2012) -
Simple and complex cells revisited: toward a selectivity-invariance model of object recognition
por: Li, Xin, et al.
Publicado: (2023)