Cargando…
Commonalities and differences between Brassica and Arabidopsis self-incompatibility
In higher plants, the self-incompatibility mechanism is important for inhibition of self-fertilization and facilitation of out-crossing. In Brassicaceae, the self-incompatibility response is mediated by allele-specific interaction of the stigma-localized S-locus receptor kinase (SRK) with the pollen...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596330/ https://www.ncbi.nlm.nih.gov/pubmed/26504553 http://dx.doi.org/10.1038/hortres.2014.54 |
Sumario: | In higher plants, the self-incompatibility mechanism is important for inhibition of self-fertilization and facilitation of out-crossing. In Brassicaceae, the self-incompatibility response is mediated by allele-specific interaction of the stigma-localized S-locus receptor kinase (SRK) with the pollen coat-localized ligand (SCR/SP11). All self-incompatible Brassicaceae plants analyzed have been found to have the SRK and SCR/SP11 genes in the S-locus region. Although Arabidopsis thaliana is self-compatible, transformation with functional SRK-SCR genes from self-incompatible Arabidopsis species confers the self-incompatibility phenotype to A. thaliana. The allele-specific interaction between SRK and SCR activates the downstream signaling cascade of self-incompatibility. Yeast two-hybrid analysis with a kinase domain of SRK as bait and genetic analysis suggested several candidate components of self-incompatibility signaling in Brassica. Recently, A. thaliana genes orthologous to the identified genes for Brassica self-incompatibility signaling were evaluated by using a self-incompatible transgenic A. thaliana plant and these orthologous genes were found not to be involved in self-incompatibility signaling in the transgenic A. thaliana. In this review, we describe common and different aspects of S-locus genomic regions and self-incompatibility signaling between Brassica and Arabidopsis. |
---|