Cargando…
Computational identification of genetic subnetwork modules associated with maize defense response to Fusarium verticillioides
BACKGROUND: Maize, a crop of global significance, is vulnerable to a variety of biotic stresses resulting in economic losses. Fusarium verticillioides (teleomorph Gibberella moniliformis) is one of the key fungal pathogens of maize, causing ear rots and stalk rots. To better understand the genetic m...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597171/ https://www.ncbi.nlm.nih.gov/pubmed/26423221 http://dx.doi.org/10.1186/1471-2105-16-S13-S12 |
_version_ | 1782393876706754560 |
---|---|
author | Kim, Mansuck Zhang, Huan Woloshuk, Charles Shim, Won-Bo Yoon, Byung-Jun |
author_facet | Kim, Mansuck Zhang, Huan Woloshuk, Charles Shim, Won-Bo Yoon, Byung-Jun |
author_sort | Kim, Mansuck |
collection | PubMed |
description | BACKGROUND: Maize, a crop of global significance, is vulnerable to a variety of biotic stresses resulting in economic losses. Fusarium verticillioides (teleomorph Gibberella moniliformis) is one of the key fungal pathogens of maize, causing ear rots and stalk rots. To better understand the genetic mechanisms involved in maize defense as well as F. verticillioides virulence, a systematic investigation of the host-pathogen interaction is needed. The aim of this study was to computationally identify potential maize subnetwork modules associated with its defense response against F. verticillioides. RESULTS: We obtained time-course RNA-seq data from B73 maize inoculated with wild type F. verticillioides and a loss-of-virulence mutant, and subsequently established a computational pipeline for network-based comparative analysis. Specifically, we first analyzed the RNA-seq data by a cointegration-correlation-expression approach, where maize genes were jointly analyzed with known F. verticillioides virulence genes to find candidate maize genes likely associated with the defense mechanism. We predicted maize co-expression networks around the selected maize candidate genes based on partial correlation, and subsequently searched for subnetwork modules that were differentially activated when inoculated with two different fungal strains. Based on our analysis pipeline, we identified four potential maize defense subnetwork modules. Two were directly associated with maize defense response and were associated with significant GO terms such as GO:0009817 (defense response to fungus) and GO:0009620 (response to fungus). The other two predicted modules were indirectly involved in the defense response, where the most significant GO terms associated with these modules were GO:0046914 (transition metal ion binding) and GO:0046686 (response to cadmium ion). CONCLUSION: Through our RNA-seq data analysis, we have shown that a network-based approach can enhance our understanding of the complicated host-pathogen interactions between maize and F. verticillioides by interpreting the transcriptome data in a system-oriented manner. We expect that the proposed analytic pipeline can also be adapted for investigating potential functional modules associated with host defense response in diverse plant-pathogen interactions. |
format | Online Article Text |
id | pubmed-4597171 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-45971712015-10-08 Computational identification of genetic subnetwork modules associated with maize defense response to Fusarium verticillioides Kim, Mansuck Zhang, Huan Woloshuk, Charles Shim, Won-Bo Yoon, Byung-Jun BMC Bioinformatics Proceedings BACKGROUND: Maize, a crop of global significance, is vulnerable to a variety of biotic stresses resulting in economic losses. Fusarium verticillioides (teleomorph Gibberella moniliformis) is one of the key fungal pathogens of maize, causing ear rots and stalk rots. To better understand the genetic mechanisms involved in maize defense as well as F. verticillioides virulence, a systematic investigation of the host-pathogen interaction is needed. The aim of this study was to computationally identify potential maize subnetwork modules associated with its defense response against F. verticillioides. RESULTS: We obtained time-course RNA-seq data from B73 maize inoculated with wild type F. verticillioides and a loss-of-virulence mutant, and subsequently established a computational pipeline for network-based comparative analysis. Specifically, we first analyzed the RNA-seq data by a cointegration-correlation-expression approach, where maize genes were jointly analyzed with known F. verticillioides virulence genes to find candidate maize genes likely associated with the defense mechanism. We predicted maize co-expression networks around the selected maize candidate genes based on partial correlation, and subsequently searched for subnetwork modules that were differentially activated when inoculated with two different fungal strains. Based on our analysis pipeline, we identified four potential maize defense subnetwork modules. Two were directly associated with maize defense response and were associated with significant GO terms such as GO:0009817 (defense response to fungus) and GO:0009620 (response to fungus). The other two predicted modules were indirectly involved in the defense response, where the most significant GO terms associated with these modules were GO:0046914 (transition metal ion binding) and GO:0046686 (response to cadmium ion). CONCLUSION: Through our RNA-seq data analysis, we have shown that a network-based approach can enhance our understanding of the complicated host-pathogen interactions between maize and F. verticillioides by interpreting the transcriptome data in a system-oriented manner. We expect that the proposed analytic pipeline can also be adapted for investigating potential functional modules associated with host defense response in diverse plant-pathogen interactions. BioMed Central 2015-09-25 /pmc/articles/PMC4597171/ /pubmed/26423221 http://dx.doi.org/10.1186/1471-2105-16-S13-S12 Text en Copyright © 2015 Kim et al. http://creativecommons.org/licenses/by/4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Proceedings Kim, Mansuck Zhang, Huan Woloshuk, Charles Shim, Won-Bo Yoon, Byung-Jun Computational identification of genetic subnetwork modules associated with maize defense response to Fusarium verticillioides |
title | Computational identification of genetic subnetwork modules associated with maize defense response to Fusarium verticillioides |
title_full | Computational identification of genetic subnetwork modules associated with maize defense response to Fusarium verticillioides |
title_fullStr | Computational identification of genetic subnetwork modules associated with maize defense response to Fusarium verticillioides |
title_full_unstemmed | Computational identification of genetic subnetwork modules associated with maize defense response to Fusarium verticillioides |
title_short | Computational identification of genetic subnetwork modules associated with maize defense response to Fusarium verticillioides |
title_sort | computational identification of genetic subnetwork modules associated with maize defense response to fusarium verticillioides |
topic | Proceedings |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597171/ https://www.ncbi.nlm.nih.gov/pubmed/26423221 http://dx.doi.org/10.1186/1471-2105-16-S13-S12 |
work_keys_str_mv | AT kimmansuck computationalidentificationofgeneticsubnetworkmodulesassociatedwithmaizedefenseresponsetofusariumverticillioides AT zhanghuan computationalidentificationofgeneticsubnetworkmodulesassociatedwithmaizedefenseresponsetofusariumverticillioides AT woloshukcharles computationalidentificationofgeneticsubnetworkmodulesassociatedwithmaizedefenseresponsetofusariumverticillioides AT shimwonbo computationalidentificationofgeneticsubnetworkmodulesassociatedwithmaizedefenseresponsetofusariumverticillioides AT yoonbyungjun computationalidentificationofgeneticsubnetworkmodulesassociatedwithmaizedefenseresponsetofusariumverticillioides |