Cargando…
A heuristic approach to determine an appropriate number of topics in topic modeling
BACKGROUND: Topic modelling is an active research field in machine learning. While mainly used to build models from unstructured textual data, it offers an effective means of data mining where samples represent documents, and different biological endpoints or omics data represent words. Latent Diric...
Autores principales: | Zhao, Weizhong, Chen, James J, Perkins, Roger, Liu, Zhichao, Ge, Weigong, Ding, Yijun, Zou, Wen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597325/ https://www.ncbi.nlm.nih.gov/pubmed/26424364 http://dx.doi.org/10.1186/1471-2105-16-S13-S8 |
Ejemplares similares
-
Topic modeling for cluster analysis of large biological and medical datasets
por: Zhao, Weizhong, et al.
Publicado: (2014) -
Competitive molecular docking approach for predicting estrogen receptor subtype α agonists and antagonists
por: Ng, Hui Wen, et al.
Publicado: (2014) -
Application of dynamic topic models to toxicogenomics data
por: Lee, Mikyung, et al.
Publicado: (2016) -
Text mining for identifying topics in the literatures about adolescent substance use and depression
por: Wang, Shi-Heng, et al.
Publicado: (2016) -
Mining FDA drug labels using an unsupervised learning technique - topic modeling
por: Bisgin, Halil, et al.
Publicado: (2011)