Cargando…

Direct view on the phase evolution in individual LiFePO(4) nanoparticles during Li-ion battery cycling

Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hinderin...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiaoyu, van Hulzen, Martijn, Singh, Deepak P., Brownrigg, Alex, Wright, Jonathan P., van Dijk, Niels H., Wagemaker, Marnix
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597332/
https://www.ncbi.nlm.nih.gov/pubmed/26395323
http://dx.doi.org/10.1038/ncomms9333
Descripción
Sumario:Phase transitions in Li-ion electrode materials during (dis)charge are decisive for battery performance, limiting high-rate capabilities and playing a crucial role in the cycle life of Li-ion batteries. However, the difficulty to probe the phase nucleation and growth in individual grains is hindering fundamental understanding and progress. Here we use synchrotron microbeam diffraction to disclose the cycling rate-dependent phase transition mechanism within individual particles of LiFePO(4), a key Li-ion electrode material. At low (dis)charge rates well-defined nanometer thin plate-shaped domains co-exist and transform much slower and concurrent as compared with the commonly assumed mosaic transformation mechanism. As the (dis)charge rate increases phase boundaries become diffuse speeding up the transformation rates of individual grains. Direct observation of the transformation of individual grains reveals that local current densities significantly differ from what has previously been assumed, giving new insights in the working of Li-ion battery electrodes and their potential improvements.