Cargando…

Circularly polarised phosphorescent photoluminescence and electroluminescence of iridium complexes

Nearly all the neutral iridium complexes widely used as dopants in PhOLEDs are racemic mixtures; however, this study observed that these complexes can be separated into stable optically active Λ and ∆ isomers and that their chirality is an intrinsic property. The circularly polarised phosphorescent...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Tian-Yi, Jing, Yi-Ming, Liu, Xuan, Zhao, Yue, Shi, Lin, Tang, Zhiyong, Zheng, You-Xuan, Zuo, Jing-Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597357/
https://www.ncbi.nlm.nih.gov/pubmed/26446521
http://dx.doi.org/10.1038/srep14912
Descripción
Sumario:Nearly all the neutral iridium complexes widely used as dopants in PhOLEDs are racemic mixtures; however, this study observed that these complexes can be separated into stable optically active Λ and ∆ isomers and that their chirality is an intrinsic property. The circularly polarised phosphorescent photoluminescence (CPPPL) signals of Λ/Δ isomers are perfect mirror images with opposite polarisation and equal intensity exhibiting a “handedness” for the polarisation. For the first time, we applied the Λ/Δ iridium isomers as emitters in OLEDs, and the circularly polarised phosphorescent electroluminescence (CPPEL) spectra reveal completely positive or negative broad peaks consistent with the CPPPL spectra. The results demonstrate that the Λ/Δ isomers have potential application for 3D OLEDs because they can exhibit high efficiency and luminance, and 3D display technology based on circularly polarised light is the most comfortable for the eyes.