Cargando…
A Bayesian approach for inducing sparsity in generalized linear models with multi-category response
BACKGROUND: The dimension and complexity of high-throughput gene expression data create many challenges for downstream analysis. Several approaches exist to reduce the number of variables with respect to small sample sizes. In this study, we utilized the Generalized Double Pareto (GDP) prior to indu...
Autores principales: | Madahian, Behrouz, Roy, Sujoy, Bowman, Dale, Deng, Lih Y, Homayouni, Ramin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597416/ https://www.ncbi.nlm.nih.gov/pubmed/26423345 http://dx.doi.org/10.1186/1471-2105-16-S13-S13 |
Ejemplares similares
-
Development of sparse Bayesian multinomial generalized linear model for multi-class prediction
por: Madahian, Behrouz, et al.
Publicado: (2014) -
Prioritization, clustering and functional annotation of MicroRNAs using latent semantic indexing of MEDLINE abstracts
por: Roy, Sujoy, et al.
Publicado: (2016) -
Development of a literature informed Bayesian machine learning method for feature extraction and classification
por: Madahian, Behrouz, et al.
Publicado: (2015) -
Phylogenetic tree construction using trinucleotide usage profile (TUP)
por: Chen, Si, et al.
Publicado: (2016) -
Navigating the Functional Landscape of Transcription Factors via Non-Negative Tensor Factorization Analysis of MEDLINE Abstracts
por: Roy, Sujoy, et al.
Publicado: (2017)