Cargando…

gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens

Small interfering RNAs (siRNAs) exhibit strong off-target effects, which confound the gene-level interpretation of RNA interference screens and thus limit their utility for functional genomics studies. Here, we present gespeR, a statistical model for reconstructing individual, gene-specific phenotyp...

Descripción completa

Detalles Bibliográficos
Autores principales: Schmich, Fabian, Szczurek, Ewa, Kreibich, Saskia, Dilling, Sabrina, Andritschke, Daniel, Casanova, Alain, Low, Shyan Huey, Eicher, Simone, Muntwiler, Simone, Emmenlauer, Mario, Rämö, Pauli, Conde-Alvarez, Raquel, von Mering, Christian, Hardt, Wolf-Dietrich, Dehio, Christoph, Beerenwinkel, Niko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597449/
https://www.ncbi.nlm.nih.gov/pubmed/26445817
http://dx.doi.org/10.1186/s13059-015-0783-1
_version_ 1782393927359266816
author Schmich, Fabian
Szczurek, Ewa
Kreibich, Saskia
Dilling, Sabrina
Andritschke, Daniel
Casanova, Alain
Low, Shyan Huey
Eicher, Simone
Muntwiler, Simone
Emmenlauer, Mario
Rämö, Pauli
Conde-Alvarez, Raquel
von Mering, Christian
Hardt, Wolf-Dietrich
Dehio, Christoph
Beerenwinkel, Niko
author_facet Schmich, Fabian
Szczurek, Ewa
Kreibich, Saskia
Dilling, Sabrina
Andritschke, Daniel
Casanova, Alain
Low, Shyan Huey
Eicher, Simone
Muntwiler, Simone
Emmenlauer, Mario
Rämö, Pauli
Conde-Alvarez, Raquel
von Mering, Christian
Hardt, Wolf-Dietrich
Dehio, Christoph
Beerenwinkel, Niko
author_sort Schmich, Fabian
collection PubMed
description Small interfering RNAs (siRNAs) exhibit strong off-target effects, which confound the gene-level interpretation of RNA interference screens and thus limit their utility for functional genomics studies. Here, we present gespeR, a statistical model for reconstructing individual, gene-specific phenotypes. Using 115,878 siRNAs, single and pooled, from three companies in three pathogen infection screens, we demonstrate that deconvolution of image-based phenotypes substantially improves the reproducibility between independent siRNA sets targeting the same genes. Genes selected and prioritized by gespeR are validated and shown to constitute biologically relevant components of pathogen entry mechanisms and TGF-β signaling. gespeR is available as a Bioconductor R-package. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-015-0783-1) contains supplementary material, which is available to authorized users.
format Online
Article
Text
id pubmed-4597449
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-45974492015-10-08 gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens Schmich, Fabian Szczurek, Ewa Kreibich, Saskia Dilling, Sabrina Andritschke, Daniel Casanova, Alain Low, Shyan Huey Eicher, Simone Muntwiler, Simone Emmenlauer, Mario Rämö, Pauli Conde-Alvarez, Raquel von Mering, Christian Hardt, Wolf-Dietrich Dehio, Christoph Beerenwinkel, Niko Genome Biol Method Small interfering RNAs (siRNAs) exhibit strong off-target effects, which confound the gene-level interpretation of RNA interference screens and thus limit their utility for functional genomics studies. Here, we present gespeR, a statistical model for reconstructing individual, gene-specific phenotypes. Using 115,878 siRNAs, single and pooled, from three companies in three pathogen infection screens, we demonstrate that deconvolution of image-based phenotypes substantially improves the reproducibility between independent siRNA sets targeting the same genes. Genes selected and prioritized by gespeR are validated and shown to constitute biologically relevant components of pathogen entry mechanisms and TGF-β signaling. gespeR is available as a Bioconductor R-package. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-015-0783-1) contains supplementary material, which is available to authorized users. BioMed Central 2015-10-07 2015 /pmc/articles/PMC4597449/ /pubmed/26445817 http://dx.doi.org/10.1186/s13059-015-0783-1 Text en © Schmich et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Method
Schmich, Fabian
Szczurek, Ewa
Kreibich, Saskia
Dilling, Sabrina
Andritschke, Daniel
Casanova, Alain
Low, Shyan Huey
Eicher, Simone
Muntwiler, Simone
Emmenlauer, Mario
Rämö, Pauli
Conde-Alvarez, Raquel
von Mering, Christian
Hardt, Wolf-Dietrich
Dehio, Christoph
Beerenwinkel, Niko
gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens
title gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens
title_full gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens
title_fullStr gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens
title_full_unstemmed gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens
title_short gespeR: a statistical model for deconvoluting off-target-confounded RNA interference screens
title_sort gesper: a statistical model for deconvoluting off-target-confounded rna interference screens
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4597449/
https://www.ncbi.nlm.nih.gov/pubmed/26445817
http://dx.doi.org/10.1186/s13059-015-0783-1
work_keys_str_mv AT schmichfabian gesperastatisticalmodelfordeconvolutingofftargetconfoundedrnainterferencescreens
AT szczurekewa gesperastatisticalmodelfordeconvolutingofftargetconfoundedrnainterferencescreens
AT kreibichsaskia gesperastatisticalmodelfordeconvolutingofftargetconfoundedrnainterferencescreens
AT dillingsabrina gesperastatisticalmodelfordeconvolutingofftargetconfoundedrnainterferencescreens
AT andritschkedaniel gesperastatisticalmodelfordeconvolutingofftargetconfoundedrnainterferencescreens
AT casanovaalain gesperastatisticalmodelfordeconvolutingofftargetconfoundedrnainterferencescreens
AT lowshyanhuey gesperastatisticalmodelfordeconvolutingofftargetconfoundedrnainterferencescreens
AT eichersimone gesperastatisticalmodelfordeconvolutingofftargetconfoundedrnainterferencescreens
AT muntwilersimone gesperastatisticalmodelfordeconvolutingofftargetconfoundedrnainterferencescreens
AT emmenlauermario gesperastatisticalmodelfordeconvolutingofftargetconfoundedrnainterferencescreens
AT ramopauli gesperastatisticalmodelfordeconvolutingofftargetconfoundedrnainterferencescreens
AT condealvarezraquel gesperastatisticalmodelfordeconvolutingofftargetconfoundedrnainterferencescreens
AT vonmeringchristian gesperastatisticalmodelfordeconvolutingofftargetconfoundedrnainterferencescreens
AT hardtwolfdietrich gesperastatisticalmodelfordeconvolutingofftargetconfoundedrnainterferencescreens
AT dehiochristoph gesperastatisticalmodelfordeconvolutingofftargetconfoundedrnainterferencescreens
AT beerenwinkelniko gesperastatisticalmodelfordeconvolutingofftargetconfoundedrnainterferencescreens