Cargando…
Modeling Exon-Specific Bias Distribution Improves the Analysis of RNA-Seq Data
RNA-seq technology has become an important tool for quantifying the gene and transcript expression in transcriptome study. The two major difficulties for the gene and transcript expression quantification are the read mapping ambiguity and the overdispersion of the read distribution along reference s...
Autores principales: | Liu, Xuejun, Zhang, Li, Chen, Songcan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598124/ https://www.ncbi.nlm.nih.gov/pubmed/26448625 http://dx.doi.org/10.1371/journal.pone.0140032 |
Ejemplares similares
-
Improving RNA-Seq expression estimation by modeling isoform- and exon-specific read sequencing rate
por: Liu, Xuejun, et al.
Publicado: (2015) -
Estimation of data-specific constitutive exons with RNA-Seq data
por: Patrick, Ellis, et al.
Publicado: (2013) -
Detecting differential usage of exons from RNA-seq data
por: Anders, Simon, et al.
Publicado: (2012) -
Sequence-specific bias correction for RNA-seq data using recurrent neural networks
por: Zhang, Yao-zhong, et al.
Publicado: (2017) -
Evaluating the bias of circRNA predictions from total RNA-Seq data
por: Wang, Jinzeng, et al.
Publicado: (2017)