Cargando…
Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition
Automatic classification of tissue types of region of interest (ROI) plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-enhanced MRI (CE-MRI)...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598126/ https://www.ncbi.nlm.nih.gov/pubmed/26447861 http://dx.doi.org/10.1371/journal.pone.0140381 |
_version_ | 1782394036425850880 |
---|---|
author | Cheng, Jun Huang, Wei Cao, Shuangliang Yang, Ru Yang, Wei Yun, Zhaoqiang Wang, Zhijian Feng, Qianjin |
author_facet | Cheng, Jun Huang, Wei Cao, Shuangliang Yang, Ru Yang, Wei Yun, Zhaoqiang Wang, Zhijian Feng, Qianjin |
author_sort | Cheng, Jun |
collection | PubMed |
description | Automatic classification of tissue types of region of interest (ROI) plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-enhanced MRI (CE-MRI) images. Spatial pyramid matching (SPM), which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM), and bag-of-words (BoW) model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI. |
format | Online Article Text |
id | pubmed-4598126 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-45981262015-10-20 Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition Cheng, Jun Huang, Wei Cao, Shuangliang Yang, Ru Yang, Wei Yun, Zhaoqiang Wang, Zhijian Feng, Qianjin PLoS One Research Article Automatic classification of tissue types of region of interest (ROI) plays an important role in computer-aided diagnosis. In the current study, we focus on the classification of three types of brain tumors (i.e., meningioma, glioma, and pituitary tumor) in T1-weighted contrast-enhanced MRI (CE-MRI) images. Spatial pyramid matching (SPM), which splits the image into increasingly fine rectangular subregions and computes histograms of local features from each subregion, exhibits excellent results for natural scene classification. However, this approach is not applicable for brain tumors, because of the great variations in tumor shape and size. In this paper, we propose a method to enhance the classification performance. First, the augmented tumor region via image dilation is used as the ROI instead of the original tumor region because tumor surrounding tissues can also offer important clues for tumor types. Second, the augmented tumor region is split into increasingly fine ring-form subregions. We evaluate the efficacy of the proposed method on a large dataset with three feature extraction methods, namely, intensity histogram, gray level co-occurrence matrix (GLCM), and bag-of-words (BoW) model. Compared with using tumor region as ROI, using augmented tumor region as ROI improves the accuracies to 82.31% from 71.39%, 84.75% from 78.18%, and 88.19% from 83.54% for intensity histogram, GLCM, and BoW model, respectively. In addition to region augmentation, ring-form partition can further improve the accuracies up to 87.54%, 89.72%, and 91.28%. These experimental results demonstrate that the proposed method is feasible and effective for the classification of brain tumors in T1-weighted CE-MRI. Public Library of Science 2015-10-08 /pmc/articles/PMC4598126/ /pubmed/26447861 http://dx.doi.org/10.1371/journal.pone.0140381 Text en © 2015 Cheng et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Cheng, Jun Huang, Wei Cao, Shuangliang Yang, Ru Yang, Wei Yun, Zhaoqiang Wang, Zhijian Feng, Qianjin Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition |
title | Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition |
title_full | Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition |
title_fullStr | Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition |
title_full_unstemmed | Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition |
title_short | Enhanced Performance of Brain Tumor Classification via Tumor Region Augmentation and Partition |
title_sort | enhanced performance of brain tumor classification via tumor region augmentation and partition |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598126/ https://www.ncbi.nlm.nih.gov/pubmed/26447861 http://dx.doi.org/10.1371/journal.pone.0140381 |
work_keys_str_mv | AT chengjun enhancedperformanceofbraintumorclassificationviatumorregionaugmentationandpartition AT huangwei enhancedperformanceofbraintumorclassificationviatumorregionaugmentationandpartition AT caoshuangliang enhancedperformanceofbraintumorclassificationviatumorregionaugmentationandpartition AT yangru enhancedperformanceofbraintumorclassificationviatumorregionaugmentationandpartition AT yangwei enhancedperformanceofbraintumorclassificationviatumorregionaugmentationandpartition AT yunzhaoqiang enhancedperformanceofbraintumorclassificationviatumorregionaugmentationandpartition AT wangzhijian enhancedperformanceofbraintumorclassificationviatumorregionaugmentationandpartition AT fengqianjin enhancedperformanceofbraintumorclassificationviatumorregionaugmentationandpartition |