Cargando…
Treatment with 5-Aza-2'-Deoxycytidine Induces Expression of NY-ESO-1 and Facilitates Cytotoxic T Lymphocyte-Mediated Tumor Cell Killing
BACKGROUND: NY-ESO-1 belongs to the cancer/testis antigen (CTA) family and represents an attractive target for cancer immunotherapy. Its expression is induced in a variety of solid tumors via DNA demethylation of the promoter of CpG islands. However, NY-ESO-1 expression is usually very low or absent...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598131/ https://www.ncbi.nlm.nih.gov/pubmed/26447882 http://dx.doi.org/10.1371/journal.pone.0139221 |
Sumario: | BACKGROUND: NY-ESO-1 belongs to the cancer/testis antigen (CTA) family and represents an attractive target for cancer immunotherapy. Its expression is induced in a variety of solid tumors via DNA demethylation of the promoter of CpG islands. However, NY-ESO-1 expression is usually very low or absent in some tumors such as breast cancer or multiple myeloma. Therefore, we established an optimized in vitro treatment protocol for up-regulation of NY-ESO-1 expression by tumor cells using the hypomethylating agent 5-aza-2'-deoxycytidine (DAC). METHODOLOGY/PRINCIPAL FINDINGS: We demonstrated de novo induction of NY-ESO-1 in MCF7 breast cancer cells and significantly increased expression in U266 multiple myeloma cells. This effect was time- and dose-dependent with the highest expression of NY-ESO-1 mRNA achieved by the incubation of 10 μM DAC for 72 hours. NY-ESO-1 activation was also confirmed at the protein level as shown by Western blot, flow cytometry, and immunofluorescence staining. The detection and quantification of single NY-ESO-1 peptides presented at the tumor cell surface in the context of HLA-A*0201 molecules revealed an increase of 100% and 50% for MCF7 and U266 cells, respectively. Moreover, the enhanced expression of NY-ESO-1 derived peptides at the cell surface was accompanied by an increased specific lysis of MCF7 and U266 cells by HLA-A*0201/NY-ESO-1((157–165)) peptide specific chimeric antigen receptor (CAR) CD8(+) T cells. In addition, the killing activity of CAR T cells correlated with the secretion of higher IFN-gamma levels. CONCLUSIONS/SIGNIFICANCE: These results indicate that NY-ESO-1 directed immunotherapy with specific CAR T cells might benefit from concomitant DAC treatment. |
---|