Cargando…
A proposal for an individualized pharmacogenetic-guided isoniazid dosage regimen for patients with tuberculosis
BACKGROUND/AIM: Isoniazid (INH) is an essential component of first-line anti-tuberculosis (TB) treatment. However, treatment with INH is complicated by polymorphisms in the expression of the enzyme system primarily responsible for its elimination, N-acetyltransferase 2 (NAT2), and its associated hep...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598210/ https://www.ncbi.nlm.nih.gov/pubmed/26491254 http://dx.doi.org/10.2147/DDDT.S87131 |
Sumario: | BACKGROUND/AIM: Isoniazid (INH) is an essential component of first-line anti-tuberculosis (TB) treatment. However, treatment with INH is complicated by polymorphisms in the expression of the enzyme system primarily responsible for its elimination, N-acetyltransferase 2 (NAT2), and its associated hepatotoxicity. The objective of this study was to develop an individualized INH dosing regimen using a pharmacogenetic-driven model and to apply this regimen in a pilot study. METHODS: A total of 206 patients with TB who received anti-TB treatment were included in this prospective study. The 2-hour post-dose concentrations of INH were obtained, and their NAT2 genotype was determined using polymerase chain reaction and sequencing. A multivariate regression analysis that included the variables of age, sex, body weight, and NAT2 genotype was performed to determine the best model for estimating the INH dose that achieves a concentration of 3.0–6.0 mg/L. This dosing algorithm was then used for newly enrolled 53 patients. RESULTS: Serum concentrations of INH were significantly lower in the rapid-acetylators than in the slow-acetylators (2.55 mg/L vs 6.78 mg/L, median, P<0.001). A multivariate stepwise linear regression analysis revealed that NAT2 and body weight independently affected INH concentrations: INH concentration (mg/L) =13.821–0.1× (body weight, kg) −2.273× (number of high activity alleles of NAT2; 0, 1, 2). In 53 newly enrolled patients, the frequency at which they were within the therapeutic range of 3.0–6.0 mg/L was higher in the model-based treatment group compared to the standard treatment group (80.8% vs 59.3%). CONCLUSION: The use of individualized pharmacogenetic-guided INH dosage regimens that incorporate NAT2 genotype and body weight may help to ensure achievement of therapeutic concentrations of INH in the TB patients. |
---|