Cargando…
Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in acute lymphoblastic leukemia
Activating mutations in NOTCH1 are common in T-cell acute lymphoblastic leukemia (TALL). Here we identify glutaminolysis as a critical pathway for leukemia cell growth downstream of NOTCH1 and a key determinant of clinical response to anti-NOTCH1 therapies. Mechanistically, inhibition of NOTCH1 sign...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598309/ https://www.ncbi.nlm.nih.gov/pubmed/26390244 http://dx.doi.org/10.1038/nm.3955 |
_version_ | 1782394061181681664 |
---|---|
author | Herranz, Daniel Ambesi-Impiombato, Alberto Sudderth, Jessica Sánchez-Martín, Marta Belver, Laura Tosello, Valeria Xu, Luyao Wendorff, Agnieszka A. Castillo, Mireia Haydu, J. Erika Márquez, Javier Matés, José M. Kung, Andrew L. Rayport, Stephen Cordon-Cardo, Carlos DeBerardinis, Ralph J. Ferrando, Adolfo A. |
author_facet | Herranz, Daniel Ambesi-Impiombato, Alberto Sudderth, Jessica Sánchez-Martín, Marta Belver, Laura Tosello, Valeria Xu, Luyao Wendorff, Agnieszka A. Castillo, Mireia Haydu, J. Erika Márquez, Javier Matés, José M. Kung, Andrew L. Rayport, Stephen Cordon-Cardo, Carlos DeBerardinis, Ralph J. Ferrando, Adolfo A. |
author_sort | Herranz, Daniel |
collection | PubMed |
description | Activating mutations in NOTCH1 are common in T-cell acute lymphoblastic leukemia (TALL). Here we identify glutaminolysis as a critical pathway for leukemia cell growth downstream of NOTCH1 and a key determinant of clinical response to anti-NOTCH1 therapies. Mechanistically, inhibition of NOTCH1 signaling in T-ALL induces a metabolic shutdown with prominent inhibition of glutaminolysis and triggers autophagy as a salvage pathway supporting leukemia cell metabolism. Consequently, both inhibition of glutaminolysis and inhibition of autophagy strongly and synergistically enhance the antileukemic effects of anti-NOTCH1 therapies. Moreover, we demonstrate that Pten loss induces increased glycolysis and consequently rescues leukemic cell metabolism abrogating the antileukemic effects of NOTCH1 inhibition. Overall, these results identify glutaminolysis as a major node in cancer metabolism controlled by NOTCH1 and as therapeutic target for the treatment of T-ALL. |
format | Online Article Text |
id | pubmed-4598309 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
record_format | MEDLINE/PubMed |
spelling | pubmed-45983092016-04-01 Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in acute lymphoblastic leukemia Herranz, Daniel Ambesi-Impiombato, Alberto Sudderth, Jessica Sánchez-Martín, Marta Belver, Laura Tosello, Valeria Xu, Luyao Wendorff, Agnieszka A. Castillo, Mireia Haydu, J. Erika Márquez, Javier Matés, José M. Kung, Andrew L. Rayport, Stephen Cordon-Cardo, Carlos DeBerardinis, Ralph J. Ferrando, Adolfo A. Nat Med Article Activating mutations in NOTCH1 are common in T-cell acute lymphoblastic leukemia (TALL). Here we identify glutaminolysis as a critical pathway for leukemia cell growth downstream of NOTCH1 and a key determinant of clinical response to anti-NOTCH1 therapies. Mechanistically, inhibition of NOTCH1 signaling in T-ALL induces a metabolic shutdown with prominent inhibition of glutaminolysis and triggers autophagy as a salvage pathway supporting leukemia cell metabolism. Consequently, both inhibition of glutaminolysis and inhibition of autophagy strongly and synergistically enhance the antileukemic effects of anti-NOTCH1 therapies. Moreover, we demonstrate that Pten loss induces increased glycolysis and consequently rescues leukemic cell metabolism abrogating the antileukemic effects of NOTCH1 inhibition. Overall, these results identify glutaminolysis as a major node in cancer metabolism controlled by NOTCH1 and as therapeutic target for the treatment of T-ALL. 2015-09-21 2015-10 /pmc/articles/PMC4598309/ /pubmed/26390244 http://dx.doi.org/10.1038/nm.3955 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Herranz, Daniel Ambesi-Impiombato, Alberto Sudderth, Jessica Sánchez-Martín, Marta Belver, Laura Tosello, Valeria Xu, Luyao Wendorff, Agnieszka A. Castillo, Mireia Haydu, J. Erika Márquez, Javier Matés, José M. Kung, Andrew L. Rayport, Stephen Cordon-Cardo, Carlos DeBerardinis, Ralph J. Ferrando, Adolfo A. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in acute lymphoblastic leukemia |
title | Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in acute lymphoblastic leukemia |
title_full | Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in acute lymphoblastic leukemia |
title_fullStr | Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in acute lymphoblastic leukemia |
title_full_unstemmed | Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in acute lymphoblastic leukemia |
title_short | Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in acute lymphoblastic leukemia |
title_sort | metabolic reprogramming induces resistance to anti-notch1 therapies in acute lymphoblastic leukemia |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598309/ https://www.ncbi.nlm.nih.gov/pubmed/26390244 http://dx.doi.org/10.1038/nm.3955 |
work_keys_str_mv | AT herranzdaniel metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia AT ambesiimpiombatoalberto metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia AT sudderthjessica metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia AT sanchezmartinmarta metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia AT belverlaura metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia AT tosellovaleria metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia AT xuluyao metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia AT wendorffagnieszkaa metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia AT castillomireia metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia AT haydujerika metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia AT marquezjavier metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia AT matesjosem metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia AT kungandrewl metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia AT rayportstephen metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia AT cordoncardocarlos metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia AT deberardinisralphj metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia AT ferrandoadolfoa metabolicreprogramminginducesresistancetoantinotch1therapiesinacutelymphoblasticleukemia |