Cargando…

Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene

In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low....

Descripción completa

Detalles Bibliográficos
Autores principales: Mihnev, Momchil T., Tolsma, John R., Divin, Charles J., Sun, Dong, Asgari, Reza, Polini, Marco, Berger, Claire, de Heer, Walt A., MacDonald, Allan H., Norris, Theodore B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598362/
https://www.ncbi.nlm.nih.gov/pubmed/26399955
http://dx.doi.org/10.1038/ncomms9105
_version_ 1782394070842212352
author Mihnev, Momchil T.
Tolsma, John R.
Divin, Charles J.
Sun, Dong
Asgari, Reza
Polini, Marco
Berger, Claire
de Heer, Walt A.
MacDonald, Allan H.
Norris, Theodore B.
author_facet Mihnev, Momchil T.
Tolsma, John R.
Divin, Charles J.
Sun, Dong
Asgari, Reza
Polini, Marco
Berger, Claire
de Heer, Walt A.
MacDonald, Allan H.
Norris, Theodore B.
author_sort Mihnev, Momchil T.
collection PubMed
description In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied.
format Online
Article
Text
id pubmed-4598362
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-45983622015-10-21 Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene Mihnev, Momchil T. Tolsma, John R. Divin, Charles J. Sun, Dong Asgari, Reza Polini, Marco Berger, Claire de Heer, Walt A. MacDonald, Allan H. Norris, Theodore B. Nat Commun Article In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. Nature Pub. Group 2015-09-24 /pmc/articles/PMC4598362/ /pubmed/26399955 http://dx.doi.org/10.1038/ncomms9105 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Mihnev, Momchil T.
Tolsma, John R.
Divin, Charles J.
Sun, Dong
Asgari, Reza
Polini, Marco
Berger, Claire
de Heer, Walt A.
MacDonald, Allan H.
Norris, Theodore B.
Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene
title Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene
title_full Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene
title_fullStr Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene
title_full_unstemmed Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene
title_short Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene
title_sort electronic cooling via interlayer coulomb coupling in multilayer epitaxial graphene
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598362/
https://www.ncbi.nlm.nih.gov/pubmed/26399955
http://dx.doi.org/10.1038/ncomms9105
work_keys_str_mv AT mihnevmomchilt electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene
AT tolsmajohnr electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene
AT divincharlesj electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene
AT sundong electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene
AT asgarireza electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene
AT polinimarco electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene
AT bergerclaire electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene
AT deheerwalta electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene
AT macdonaldallanh electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene
AT norristheodoreb electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene