Cargando…
Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene
In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low....
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598362/ https://www.ncbi.nlm.nih.gov/pubmed/26399955 http://dx.doi.org/10.1038/ncomms9105 |
_version_ | 1782394070842212352 |
---|---|
author | Mihnev, Momchil T. Tolsma, John R. Divin, Charles J. Sun, Dong Asgari, Reza Polini, Marco Berger, Claire de Heer, Walt A. MacDonald, Allan H. Norris, Theodore B. |
author_facet | Mihnev, Momchil T. Tolsma, John R. Divin, Charles J. Sun, Dong Asgari, Reza Polini, Marco Berger, Claire de Heer, Walt A. MacDonald, Allan H. Norris, Theodore B. |
author_sort | Mihnev, Momchil T. |
collection | PubMed |
description | In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. |
format | Online Article Text |
id | pubmed-4598362 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-45983622015-10-21 Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene Mihnev, Momchil T. Tolsma, John R. Divin, Charles J. Sun, Dong Asgari, Reza Polini, Marco Berger, Claire de Heer, Walt A. MacDonald, Allan H. Norris, Theodore B. Nat Commun Article In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. Nature Pub. Group 2015-09-24 /pmc/articles/PMC4598362/ /pubmed/26399955 http://dx.doi.org/10.1038/ncomms9105 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Mihnev, Momchil T. Tolsma, John R. Divin, Charles J. Sun, Dong Asgari, Reza Polini, Marco Berger, Claire de Heer, Walt A. MacDonald, Allan H. Norris, Theodore B. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene |
title | Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene |
title_full | Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene |
title_fullStr | Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene |
title_full_unstemmed | Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene |
title_short | Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene |
title_sort | electronic cooling via interlayer coulomb coupling in multilayer epitaxial graphene |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598362/ https://www.ncbi.nlm.nih.gov/pubmed/26399955 http://dx.doi.org/10.1038/ncomms9105 |
work_keys_str_mv | AT mihnevmomchilt electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene AT tolsmajohnr electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene AT divincharlesj electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene AT sundong electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene AT asgarireza electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene AT polinimarco electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene AT bergerclaire electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene AT deheerwalta electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene AT macdonaldallanh electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene AT norristheodoreb electroniccoolingviainterlayercoulombcouplinginmultilayerepitaxialgraphene |