Cargando…

All-passive nonreciprocal metastructure

One-way propagation of light, analogous to the directional flow of electrons in the presence of electric potential difference, has been an important goal in the wave–matter interaction. Breaking time-reversal symmetry in photonic flows is faced with challenges different from those for electron flows...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahmoud, Ahmed M., Davoyan, Arthur R., Engheta, Nader
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598563/
https://www.ncbi.nlm.nih.gov/pubmed/26414528
http://dx.doi.org/10.1038/ncomms9359
Descripción
Sumario:One-way propagation of light, analogous to the directional flow of electrons in the presence of electric potential difference, has been an important goal in the wave–matter interaction. Breaking time-reversal symmetry in photonic flows is faced with challenges different from those for electron flows. In recent years several approaches and methods have been offered towards achieving this goal. Here we investigate another systematic approach to design all-passive relatively high-throughput metastructures that exhibit nonreciprocal properties and achieve wave-flow isolation. Moreover, we build on those findings and propose a paradigm for a quasi-two-dimensional metastructure that mimics the nonreciprocal property of Faraday rotation without using any magnetic or electric biasing. We envision that the proposed approaches may serve as a building block for all-passive time-reversal symmetry breaking with potential applications for future nonreciprocal systems and devices