Cargando…
Histone Deacetylase Inhibitors Activate Tristetraprolin Expression through Induction of Early Growth Response Protein 1 (EGR1) in Colorectal Cancer Cells
The RNA-binding protein tristetraprolin (TTP) promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE). In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4598787/ https://www.ncbi.nlm.nih.gov/pubmed/26343742 http://dx.doi.org/10.3390/biom5032035 |
Sumario: | The RNA-binding protein tristetraprolin (TTP) promotes rapid decay of mRNAs bearing 3' UTR AU-rich elements (ARE). In many cancer types, loss of TTP expression is observed allowing for stabilization of ARE-mRNAs and their pathologic overexpression. Here we demonstrate that histone deacetylase (HDAC) inhibitors (Trichostatin A, SAHA and sodium butyrate) promote TTP expression in colorectal cancer cells (HCA-7, HCT-116, Moser and SW480 cells) and cervix carcinoma cells (HeLa). We found that HDAC inhibitors-induced TTP expression, promote the decay of COX-2 mRNA, and inhibit cancer cell proliferation. HDAC inhibitors were found to promote TTP transcription through activation of the transcription factor Early Growth Response protein 1 (EGR1). Altogether, our findings indicate that loss of TTP in tumors occurs through silencing of EGR1 and suggests a therapeutic approach to rescue TTP expression in colorectal cancer. |
---|