Cargando…

Radiation-induced microrna-622 causes radioresistance in colorectal cancer cells by down-regulating Rb

The standard treatment for patients with locally advanced rectal cancer is preoperative 5-fluorouracil-based chemoradiotherapy followed by total mesorectal excision. However, tumor response to standard dose radiation varies. In this study, we found that miR-622 was increased significantly in ionizin...

Descripción completa

Detalles Bibliográficos
Autores principales: Ma, Wenhui, Yu, Jiang, Qi, Xiaolong, Liang, Li, Zhang, Yan, Ding, Yi, Lin, Xiaoshan, Li, Guoxin, Ding, Yanqing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Impact Journals LLC 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599251/
https://www.ncbi.nlm.nih.gov/pubmed/25961730
Descripción
Sumario:The standard treatment for patients with locally advanced rectal cancer is preoperative 5-fluorouracil-based chemoradiotherapy followed by total mesorectal excision. However, tumor response to standard dose radiation varies. In this study, we found that miR-622 was increased significantly in ionizing radiation-treated colorectal cancer (CRC) cells compared to the cells cultured with irradiated medium, and persisted stably in surviving cells treated with continuous low-dose radiation. Overexpression of miR-622 induced the radioresistance in vitro. In addition, miR-622 inhibited Rb expression by directly targeting RB1-3′UTR. Overexpression of Rb reversed miR-622-induced radioresistance in vitro. In response to ionizing radiation, the Rb-E2F1-P/CAF complex activated proapoptotic genes. Importantly, miR-622 was highly expressed in tumors of rectal cancer patients with non-regression after standard dose radiotherapy. In conclusion, miR-622 overexpressing cells are induced or selected by radiotherapy, causing in turn radioresistance and poor response to further therapy. MiR-622 is a potential biomarker of responders for radiotherapy and a potential therapeutic target.