Cargando…
Honokiol abrogates leptin-induced tumor progression by inhibiting Wnt1-MTA1-β-catenin signaling axis in a microRNA-34a dependent manner
Obesity greatly influences risk, progression and prognosis of breast cancer. As molecular effects of obesity are largely mediated by adipocytokine leptin, finding effective novel strategies to antagonize neoplastic effects of leptin is desirable to disrupt obesity-cancer axis. Present study is desig...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599277/ https://www.ncbi.nlm.nih.gov/pubmed/26036628 |
_version_ | 1782394221972422656 |
---|---|
author | Avtanski, Dimiter B. Nagalingam, Arumugam Kuppusamy, Panjamurthy Bonner, Michael Y. Arbiser, Jack L. Saxena, Neeraj K. Sharma, Dipali |
author_facet | Avtanski, Dimiter B. Nagalingam, Arumugam Kuppusamy, Panjamurthy Bonner, Michael Y. Arbiser, Jack L. Saxena, Neeraj K. Sharma, Dipali |
author_sort | Avtanski, Dimiter B. |
collection | PubMed |
description | Obesity greatly influences risk, progression and prognosis of breast cancer. As molecular effects of obesity are largely mediated by adipocytokine leptin, finding effective novel strategies to antagonize neoplastic effects of leptin is desirable to disrupt obesity-cancer axis. Present study is designed to test the efficacy of honokiol (HNK), a bioactive polyphenol from Magnolia grandiflora, against oncogenic actions of leptin and systematically elucidate the underlying mechanisms. Our results show that HNK significantly inhibits leptin-induced breast-cancer cell-growth, invasion, migration and leptin-induced breast-tumor-xenograft growth. Using a phospho-kinase screening array, we discover that HNK inhibits phosphorylation and activation of key molecules of leptin-signaling-network. Specifically, HNK inhibits leptin-induced Wnt1-MTA1-β-catenin signaling in vitro and in vivo. Finally, an integral role of miR-34a in HNK-mediated inhibition of Wnt1-MTA1-β-catenin axis was discovered. HNK inhibits Stat3 phosphorylation, abrogates its recruitment to miR-34a promoter and this release of repressor-Stat3 results in miR-34a activation leading to Wnt1-MTA1-β-catenin inhibition. Accordingly, HNK treatment inhibited breast tumor growth in diet-induced-obese mouse model (exhibiting high leptin levels) in a manner associated with activation of miR-34a and inhibition of MTA1-β-catenin. These data provide first in vitro and in vivo evidence for the leptin-antagonist potential of HNK revealing a crosstalk between HNK and miR34a and Wnt1-MTA1-β-catenin axis. |
format | Online Article Text |
id | pubmed-4599277 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Impact Journals LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-45992772015-10-26 Honokiol abrogates leptin-induced tumor progression by inhibiting Wnt1-MTA1-β-catenin signaling axis in a microRNA-34a dependent manner Avtanski, Dimiter B. Nagalingam, Arumugam Kuppusamy, Panjamurthy Bonner, Michael Y. Arbiser, Jack L. Saxena, Neeraj K. Sharma, Dipali Oncotarget Research Paper Obesity greatly influences risk, progression and prognosis of breast cancer. As molecular effects of obesity are largely mediated by adipocytokine leptin, finding effective novel strategies to antagonize neoplastic effects of leptin is desirable to disrupt obesity-cancer axis. Present study is designed to test the efficacy of honokiol (HNK), a bioactive polyphenol from Magnolia grandiflora, against oncogenic actions of leptin and systematically elucidate the underlying mechanisms. Our results show that HNK significantly inhibits leptin-induced breast-cancer cell-growth, invasion, migration and leptin-induced breast-tumor-xenograft growth. Using a phospho-kinase screening array, we discover that HNK inhibits phosphorylation and activation of key molecules of leptin-signaling-network. Specifically, HNK inhibits leptin-induced Wnt1-MTA1-β-catenin signaling in vitro and in vivo. Finally, an integral role of miR-34a in HNK-mediated inhibition of Wnt1-MTA1-β-catenin axis was discovered. HNK inhibits Stat3 phosphorylation, abrogates its recruitment to miR-34a promoter and this release of repressor-Stat3 results in miR-34a activation leading to Wnt1-MTA1-β-catenin inhibition. Accordingly, HNK treatment inhibited breast tumor growth in diet-induced-obese mouse model (exhibiting high leptin levels) in a manner associated with activation of miR-34a and inhibition of MTA1-β-catenin. These data provide first in vitro and in vivo evidence for the leptin-antagonist potential of HNK revealing a crosstalk between HNK and miR34a and Wnt1-MTA1-β-catenin axis. Impact Journals LLC 2015-04-15 /pmc/articles/PMC4599277/ /pubmed/26036628 Text en Copyright: © 2015 Avtanski et al. http://creativecommons.org/licenses/by/2.5/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Paper Avtanski, Dimiter B. Nagalingam, Arumugam Kuppusamy, Panjamurthy Bonner, Michael Y. Arbiser, Jack L. Saxena, Neeraj K. Sharma, Dipali Honokiol abrogates leptin-induced tumor progression by inhibiting Wnt1-MTA1-β-catenin signaling axis in a microRNA-34a dependent manner |
title | Honokiol abrogates leptin-induced tumor progression by inhibiting Wnt1-MTA1-β-catenin signaling axis in a microRNA-34a dependent manner |
title_full | Honokiol abrogates leptin-induced tumor progression by inhibiting Wnt1-MTA1-β-catenin signaling axis in a microRNA-34a dependent manner |
title_fullStr | Honokiol abrogates leptin-induced tumor progression by inhibiting Wnt1-MTA1-β-catenin signaling axis in a microRNA-34a dependent manner |
title_full_unstemmed | Honokiol abrogates leptin-induced tumor progression by inhibiting Wnt1-MTA1-β-catenin signaling axis in a microRNA-34a dependent manner |
title_short | Honokiol abrogates leptin-induced tumor progression by inhibiting Wnt1-MTA1-β-catenin signaling axis in a microRNA-34a dependent manner |
title_sort | honokiol abrogates leptin-induced tumor progression by inhibiting wnt1-mta1-β-catenin signaling axis in a microrna-34a dependent manner |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599277/ https://www.ncbi.nlm.nih.gov/pubmed/26036628 |
work_keys_str_mv | AT avtanskidimiterb honokiolabrogatesleptininducedtumorprogressionbyinhibitingwnt1mta1bcateninsignalingaxisinamicrorna34adependentmanner AT nagalingamarumugam honokiolabrogatesleptininducedtumorprogressionbyinhibitingwnt1mta1bcateninsignalingaxisinamicrorna34adependentmanner AT kuppusamypanjamurthy honokiolabrogatesleptininducedtumorprogressionbyinhibitingwnt1mta1bcateninsignalingaxisinamicrorna34adependentmanner AT bonnermichaely honokiolabrogatesleptininducedtumorprogressionbyinhibitingwnt1mta1bcateninsignalingaxisinamicrorna34adependentmanner AT arbiserjackl honokiolabrogatesleptininducedtumorprogressionbyinhibitingwnt1mta1bcateninsignalingaxisinamicrorna34adependentmanner AT saxenaneerajk honokiolabrogatesleptininducedtumorprogressionbyinhibitingwnt1mta1bcateninsignalingaxisinamicrorna34adependentmanner AT sharmadipali honokiolabrogatesleptininducedtumorprogressionbyinhibitingwnt1mta1bcateninsignalingaxisinamicrorna34adependentmanner |