Cargando…
Sequence specificity between interacting and non-interacting homologs identifies interface residues – a homodimer and monomer use case
BACKGROUND: Protein families participating in protein-protein interactions may contain sub-families that have different binding characteristics, ranging from right binding to showing no interaction at all. Composition differences at the sequence level in these sub-families are often decisive to thei...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599308/ https://www.ncbi.nlm.nih.gov/pubmed/26449222 http://dx.doi.org/10.1186/s12859-015-0758-y |
_version_ | 1782394229009416192 |
---|---|
author | Hou, Qingzhen Dutilh, Bas E. Huynen, Martijn A. Heringa, Jaap Feenstra, K. Anton |
author_facet | Hou, Qingzhen Dutilh, Bas E. Huynen, Martijn A. Heringa, Jaap Feenstra, K. Anton |
author_sort | Hou, Qingzhen |
collection | PubMed |
description | BACKGROUND: Protein families participating in protein-protein interactions may contain sub-families that have different binding characteristics, ranging from right binding to showing no interaction at all. Composition differences at the sequence level in these sub-families are often decisive to their differential functional interaction. Methods to predict interface sites from protein sequences typically exploit conservation as a signal. Here, instead, we provide proof of concept that the sequence specificity between interacting versus non-interacting groups can be exploited to recognise interaction sites. RESULTS: We collected homodimeric and monomeric proteins and formed homologous groups, each having an interacting (homodimer) subgroup and a non-interacting (monomer) subgroup. We then compiled multiple sequence alignments of the proteins in the homologous groups and identified compositional differences between the homodimeric and monomeric subgroups for each of the alignment positions. Our results show that this specificity signal distinguishes interface and other surface residues with 40.9 % recall and up to 25.1 % precision. CONCLUSIONS: To our best knowledge, this is the first large scale study that exploits sequence specificity between interacting and non-interacting homologs to predict interaction sites from sequence information only. The performance obtained indicates that this signal contains valuable information to identify protein-protein interaction sites. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0758-y) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-4599308 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-45993082015-10-10 Sequence specificity between interacting and non-interacting homologs identifies interface residues – a homodimer and monomer use case Hou, Qingzhen Dutilh, Bas E. Huynen, Martijn A. Heringa, Jaap Feenstra, K. Anton BMC Bioinformatics Research Article BACKGROUND: Protein families participating in protein-protein interactions may contain sub-families that have different binding characteristics, ranging from right binding to showing no interaction at all. Composition differences at the sequence level in these sub-families are often decisive to their differential functional interaction. Methods to predict interface sites from protein sequences typically exploit conservation as a signal. Here, instead, we provide proof of concept that the sequence specificity between interacting versus non-interacting groups can be exploited to recognise interaction sites. RESULTS: We collected homodimeric and monomeric proteins and formed homologous groups, each having an interacting (homodimer) subgroup and a non-interacting (monomer) subgroup. We then compiled multiple sequence alignments of the proteins in the homologous groups and identified compositional differences between the homodimeric and monomeric subgroups for each of the alignment positions. Our results show that this specificity signal distinguishes interface and other surface residues with 40.9 % recall and up to 25.1 % precision. CONCLUSIONS: To our best knowledge, this is the first large scale study that exploits sequence specificity between interacting and non-interacting homologs to predict interaction sites from sequence information only. The performance obtained indicates that this signal contains valuable information to identify protein-protein interaction sites. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-015-0758-y) contains supplementary material, which is available to authorized users. BioMed Central 2015-10-08 /pmc/articles/PMC4599308/ /pubmed/26449222 http://dx.doi.org/10.1186/s12859-015-0758-y Text en © Hou et al. 2015 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Hou, Qingzhen Dutilh, Bas E. Huynen, Martijn A. Heringa, Jaap Feenstra, K. Anton Sequence specificity between interacting and non-interacting homologs identifies interface residues – a homodimer and monomer use case |
title | Sequence specificity between interacting and non-interacting homologs identifies interface residues – a homodimer and monomer use case |
title_full | Sequence specificity between interacting and non-interacting homologs identifies interface residues – a homodimer and monomer use case |
title_fullStr | Sequence specificity between interacting and non-interacting homologs identifies interface residues – a homodimer and monomer use case |
title_full_unstemmed | Sequence specificity between interacting and non-interacting homologs identifies interface residues – a homodimer and monomer use case |
title_short | Sequence specificity between interacting and non-interacting homologs identifies interface residues – a homodimer and monomer use case |
title_sort | sequence specificity between interacting and non-interacting homologs identifies interface residues – a homodimer and monomer use case |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599308/ https://www.ncbi.nlm.nih.gov/pubmed/26449222 http://dx.doi.org/10.1186/s12859-015-0758-y |
work_keys_str_mv | AT houqingzhen sequencespecificitybetweeninteractingandnoninteractinghomologsidentifiesinterfaceresiduesahomodimerandmonomerusecase AT dutilhbase sequencespecificitybetweeninteractingandnoninteractinghomologsidentifiesinterfaceresiduesahomodimerandmonomerusecase AT huynenmartijna sequencespecificitybetweeninteractingandnoninteractinghomologsidentifiesinterfaceresiduesahomodimerandmonomerusecase AT heringajaap sequencespecificitybetweeninteractingandnoninteractinghomologsidentifiesinterfaceresiduesahomodimerandmonomerusecase AT feenstrakanton sequencespecificitybetweeninteractingandnoninteractinghomologsidentifiesinterfaceresiduesahomodimerandmonomerusecase |