Cargando…
Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite – an in vitro study
In the past 2 decades, wollastonite has been studied thoroughly for its application as a bone implant material due to its biocompatibility, high mechanical strength, and excellent bioactivity when compared to calcium phosphates bioceramics. Wollastonite was prepared through the low-temperature sol-g...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599603/ https://www.ncbi.nlm.nih.gov/pubmed/26491314 http://dx.doi.org/10.2147/IJN.S79986 |
_version_ | 1782394283923341312 |
---|---|
author | Lakshmi, R Sasikumar, S |
author_facet | Lakshmi, R Sasikumar, S |
author_sort | Lakshmi, R |
collection | PubMed |
description | In the past 2 decades, wollastonite has been studied thoroughly for its application as a bone implant material due to its biocompatibility, high mechanical strength, and excellent bioactivity when compared to calcium phosphates bioceramics. Wollastonite was prepared through the low-temperature sol-gel combustion method using urea as the fuel, nitrate ions and nitric acid as the oxidizer. Calcium nitrate and tetraethyl orthosilicate were taken as the source of calcium and silica. The synthesized wollastonite were characterized by Fourier transform infrared spectroscopy for the identification of characteristic functional group and powder X-ray diffraction for the phase identification. Employing urea as a fuel resulted in needle-like morphology of the particles, which was confirmed by scanning electron microscopy and transmission electron microscopy. It was observed that the needle-like morphology enhances the mechanical properties such as elasticity and compressive strength and also increases the surface area of the material, which could help in a rapid deposition of hydroxyapatite layer. These properties of wollastonite warrant its application as a new artificial bone material in the field of hard tissue engineering. |
format | Online Article Text |
id | pubmed-4599603 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-45996032015-10-21 Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite – an in vitro study Lakshmi, R Sasikumar, S Int J Nanomedicine Original Research In the past 2 decades, wollastonite has been studied thoroughly for its application as a bone implant material due to its biocompatibility, high mechanical strength, and excellent bioactivity when compared to calcium phosphates bioceramics. Wollastonite was prepared through the low-temperature sol-gel combustion method using urea as the fuel, nitrate ions and nitric acid as the oxidizer. Calcium nitrate and tetraethyl orthosilicate were taken as the source of calcium and silica. The synthesized wollastonite were characterized by Fourier transform infrared spectroscopy for the identification of characteristic functional group and powder X-ray diffraction for the phase identification. Employing urea as a fuel resulted in needle-like morphology of the particles, which was confirmed by scanning electron microscopy and transmission electron microscopy. It was observed that the needle-like morphology enhances the mechanical properties such as elasticity and compressive strength and also increases the surface area of the material, which could help in a rapid deposition of hydroxyapatite layer. These properties of wollastonite warrant its application as a new artificial bone material in the field of hard tissue engineering. Dove Medical Press 2015-10-01 /pmc/articles/PMC4599603/ /pubmed/26491314 http://dx.doi.org/10.2147/IJN.S79986 Text en © 2015 Lakshmi and Sasikumar. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. |
spellingShingle | Original Research Lakshmi, R Sasikumar, S Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite – an in vitro study |
title | Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite – an in vitro study |
title_full | Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite – an in vitro study |
title_fullStr | Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite – an in vitro study |
title_full_unstemmed | Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite – an in vitro study |
title_short | Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite – an in vitro study |
title_sort | influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite – an in vitro study |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599603/ https://www.ncbi.nlm.nih.gov/pubmed/26491314 http://dx.doi.org/10.2147/IJN.S79986 |
work_keys_str_mv | AT lakshmir influenceofneedlelikemorphologyonthebioactivityofnanocrystallinewollastoniteaninvitrostudy AT sasikumars influenceofneedlelikemorphologyonthebioactivityofnanocrystallinewollastoniteaninvitrostudy |