Cargando…

Tribological and corrosion behaviors of warm-and hot-rolled Ti-13Nb-13Zr alloys in simulated body fluid conditions

Development of submicrocrystalline structure in biomedical alloy such as Ti-13Nb-13Zr (in wt%) through warm-rolling process has been found to enhance mechanical properties compared to conventional thermomechanical processing routes including hot-rolling process. The present study investigated the tr...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Taekyung, Mathew, Eshaan, Rajaraman, Santhosh, Manivasagam, Geetha, Singh, Ashok Kumar, Lee, Chong Soo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599616/
https://www.ncbi.nlm.nih.gov/pubmed/26491322
http://dx.doi.org/10.2147/IJN.S79996
Descripción
Sumario:Development of submicrocrystalline structure in biomedical alloy such as Ti-13Nb-13Zr (in wt%) through warm-rolling process has been found to enhance mechanical properties compared to conventional thermomechanical processing routes including hot-rolling process. The present study investigated the tribological and corrosion behaviors of warm-rolled (WR) and hot-rolled Ti-13Nb-13Zr alloys which have not been studied to date. Both tribological and corrosion experiments were carried out in simulated body fluid conditions (Hank’s solution at 37°C) based on the fact that the investigated alloys would be used in a human body as orthopedic implants. The WR Ti-13Nb-13Zr demonstrated a submicrocrystalline structure that provided a significant enhancement in hardness, strength, and corrosion resistance. Meanwhile, there was no notable difference in wear resistance between the WR and hot-rolled samples despite the different microstructure and hardness. The present study confirmed the enormous potential of WR Ti-13Nb-13Zr with not only great mechanical properties but also high corrosion resistance in the simulated body fluid.