Cargando…

Loss of lysyl oxidase-like 3 causes cleft palate and spinal deformity in mice

In mammals, embryonic development are highly regulated morphogenetic processes that are tightly controlled by genetic elements. Failure of any one of these processes can result in embryonic malformation. The lysyl oxidase (LOX) family genes are closely related to human diseases. In this study, we in...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Jian, Yang, Rui, Liu, Ziyi, Hou, Congzhe, Zong, Wen, Zhang, Aizhen, Sun, Xiaoyang, Gao, Jiangang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4599675/
https://www.ncbi.nlm.nih.gov/pubmed/26307084
http://dx.doi.org/10.1093/hmg/ddv333
Descripción
Sumario:In mammals, embryonic development are highly regulated morphogenetic processes that are tightly controlled by genetic elements. Failure of any one of these processes can result in embryonic malformation. The lysyl oxidase (LOX) family genes are closely related to human diseases. In this study, we investigated the essential role of lysyl oxidase-like 3 (LOXL3), a member of the LOX family, in embryonic development. Mice lacking LOXL3 exhibited perinatal lethality, and the deletion of the Loxl3 gene led to impaired development of the palate shelves, abnormalities in the cartilage primordia of the thoracic vertebrae and mild alveolar shrinkage. We found that the obvious decrease of collagen cross-links in palate and spine that was induced by the lack of LOXL3 resulted in cleft palate and spinal deformity. Thus, we provide critical in vivo evidence that LOXL3 is indispensable for mouse palatogenesis and vertebral column development. The Loxl3 gene may be a candidate disease gene resulting in cleft palate and spinal deformity.