Cargando…
Viral Vector Based Improvement of Optic Nerve Regeneration: Characterization of Individual Axons’ Growth Patterns and Synaptogenesis in a Visual Target
Lack of axon growth ability in the central nervous system poses a major barrier to achieving functional connectivity after injury. Thus, a non-transgenic regenerative approach to reinnervating targets has important implications in clinical and research settings. Previous studies using knockout (KO)...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600032/ https://www.ncbi.nlm.nih.gov/pubmed/26005861 http://dx.doi.org/10.1038/gt.2015.51 |
_version_ | 1782394359646257152 |
---|---|
author | Yungher, Benjamin J. Luo, Xueting Salgueiro, Yadira Blackmore, Murray G. Park, Kevin K. |
author_facet | Yungher, Benjamin J. Luo, Xueting Salgueiro, Yadira Blackmore, Murray G. Park, Kevin K. |
author_sort | Yungher, Benjamin J. |
collection | PubMed |
description | Lack of axon growth ability in the central nervous system poses a major barrier to achieving functional connectivity after injury. Thus, a non-transgenic regenerative approach to reinnervating targets has important implications in clinical and research settings. Previous studies using knockout (KO) mice have demonstrated long distance axon regeneration. Using an optic nerve injury model, here we evaluate the efficacy of viral, RNAi and pharmacological approaches that target the PTEN and STAT3 pathways to improve long distance axon regeneration in wild type (WT) mice. Our data show that adeno-associated virus (AAV) expressing short hairpin RNA (shRNA) against PTEN (shPTEN) enhances retinal ganglion cell axon regeneration after crush injury. However, compared to the previous data in PTEN KO mice, AAV-shRNA results in a lesser degree of regeneration, likely due to incomplete gene silencing inherent to RNAi. In comparison, an extensive enhancement in regeneration is seen when AAV-shPTEN is coupled to AAV encoding ciliary neurotrophic factor (CNTF) and to a cyclic adenosine monophosphate (cAMP) analogue, allowing axons to travel long distances and reach their target. We apply whole tissue imaging that facilitates three-dimensional visualization of single regenerating axons and document heterogeneous terminal patterns in the targets. This shows that some axonal populations generate extensive arbors and make synapses with the target neurons. Collectively, we show a combinatorial viral RNAi and pharmacological strategy that improves long distance regeneration in WT animals and provide single fiber projection data that indicates a degree of preservation of target recognition. |
format | Online Article Text |
id | pubmed-4600032 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
record_format | MEDLINE/PubMed |
spelling | pubmed-46000322016-04-01 Viral Vector Based Improvement of Optic Nerve Regeneration: Characterization of Individual Axons’ Growth Patterns and Synaptogenesis in a Visual Target Yungher, Benjamin J. Luo, Xueting Salgueiro, Yadira Blackmore, Murray G. Park, Kevin K. Gene Ther Article Lack of axon growth ability in the central nervous system poses a major barrier to achieving functional connectivity after injury. Thus, a non-transgenic regenerative approach to reinnervating targets has important implications in clinical and research settings. Previous studies using knockout (KO) mice have demonstrated long distance axon regeneration. Using an optic nerve injury model, here we evaluate the efficacy of viral, RNAi and pharmacological approaches that target the PTEN and STAT3 pathways to improve long distance axon regeneration in wild type (WT) mice. Our data show that adeno-associated virus (AAV) expressing short hairpin RNA (shRNA) against PTEN (shPTEN) enhances retinal ganglion cell axon regeneration after crush injury. However, compared to the previous data in PTEN KO mice, AAV-shRNA results in a lesser degree of regeneration, likely due to incomplete gene silencing inherent to RNAi. In comparison, an extensive enhancement in regeneration is seen when AAV-shPTEN is coupled to AAV encoding ciliary neurotrophic factor (CNTF) and to a cyclic adenosine monophosphate (cAMP) analogue, allowing axons to travel long distances and reach their target. We apply whole tissue imaging that facilitates three-dimensional visualization of single regenerating axons and document heterogeneous terminal patterns in the targets. This shows that some axonal populations generate extensive arbors and make synapses with the target neurons. Collectively, we show a combinatorial viral RNAi and pharmacological strategy that improves long distance regeneration in WT animals and provide single fiber projection data that indicates a degree of preservation of target recognition. 2015-05-25 2015-10 /pmc/articles/PMC4600032/ /pubmed/26005861 http://dx.doi.org/10.1038/gt.2015.51 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Yungher, Benjamin J. Luo, Xueting Salgueiro, Yadira Blackmore, Murray G. Park, Kevin K. Viral Vector Based Improvement of Optic Nerve Regeneration: Characterization of Individual Axons’ Growth Patterns and Synaptogenesis in a Visual Target |
title | Viral Vector Based Improvement of Optic Nerve Regeneration: Characterization of Individual Axons’ Growth Patterns and Synaptogenesis in a Visual Target |
title_full | Viral Vector Based Improvement of Optic Nerve Regeneration: Characterization of Individual Axons’ Growth Patterns and Synaptogenesis in a Visual Target |
title_fullStr | Viral Vector Based Improvement of Optic Nerve Regeneration: Characterization of Individual Axons’ Growth Patterns and Synaptogenesis in a Visual Target |
title_full_unstemmed | Viral Vector Based Improvement of Optic Nerve Regeneration: Characterization of Individual Axons’ Growth Patterns and Synaptogenesis in a Visual Target |
title_short | Viral Vector Based Improvement of Optic Nerve Regeneration: Characterization of Individual Axons’ Growth Patterns and Synaptogenesis in a Visual Target |
title_sort | viral vector based improvement of optic nerve regeneration: characterization of individual axons’ growth patterns and synaptogenesis in a visual target |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600032/ https://www.ncbi.nlm.nih.gov/pubmed/26005861 http://dx.doi.org/10.1038/gt.2015.51 |
work_keys_str_mv | AT yungherbenjaminj viralvectorbasedimprovementofopticnerveregenerationcharacterizationofindividualaxonsgrowthpatternsandsynaptogenesisinavisualtarget AT luoxueting viralvectorbasedimprovementofopticnerveregenerationcharacterizationofindividualaxonsgrowthpatternsandsynaptogenesisinavisualtarget AT salgueiroyadira viralvectorbasedimprovementofopticnerveregenerationcharacterizationofindividualaxonsgrowthpatternsandsynaptogenesisinavisualtarget AT blackmoremurrayg viralvectorbasedimprovementofopticnerveregenerationcharacterizationofindividualaxonsgrowthpatternsandsynaptogenesisinavisualtarget AT parkkevink viralvectorbasedimprovementofopticnerveregenerationcharacterizationofindividualaxonsgrowthpatternsandsynaptogenesisinavisualtarget |