Cargando…

Summation of connectivity strengths in the visual cortex reveals stability of neuronal microcircuits after plasticity

BACKGROUND: Within sensory systems, neurons are continuously affected by environmental stimulation. Recently, we showed that, on cell-pair basis, visual adaptation modulates the connectivity strength between similarly tuned neurons to orientation and we suggested that, on a larger scale, the connect...

Descripción completa

Detalles Bibliográficos
Autores principales: Bachatene, Lyes, Bharmauria, Vishal, Cattan, Sarah, Chanauria, Nayan, Rouat, Jean, Molotchnikoff, Stéphane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600218/
https://www.ncbi.nlm.nih.gov/pubmed/26453336
http://dx.doi.org/10.1186/s12868-015-0203-1
Descripción
Sumario:BACKGROUND: Within sensory systems, neurons are continuously affected by environmental stimulation. Recently, we showed that, on cell-pair basis, visual adaptation modulates the connectivity strength between similarly tuned neurons to orientation and we suggested that, on a larger scale, the connectivity strength between neurons forming sub-networks could be maintained after adaptation-induced-plasticity. In the present paper, based on the summation of the connectivity strengths, we sought to examine how, within cell-assemblies, functional connectivity is regulated during an exposure-based adaptation. RESULTS: Using intrinsic optical imaging combined with electrophysiological recordings following the reconfiguration of the maps of the primary visual cortex by long stimulus exposure, we found that within functionally connected cells, the summed connectivity strengths remain almost equal although connections among individual pairs are modified. Neuronal selectivity appears to be strongly associated with neuronal connectivity in a “homeodynamic” manner which maintains the stability of cortical functional relationships after experience-dependent plasticity. CONCLUSIONS: Our results support the “homeostatic plasticity concept” giving new perspectives on how the summation in visual cortex leads to the stability within labile neuronal ensembles, depending on the newly acquired properties by neurons.