Cargando…

The Role of the NDQ Motif in Sodium-Pumping Rhodopsins

Sodium-pumping rhodopsins (NaRs) are light-driven outward Na(+) pumps. NaRs have a conserved Asn, Asp, and Gln motif (NDQ) in the third transmembrane helix (helix C). The NDQ motif is thus expected to play a crucial role in the operation of the Na(+) pump. Herein, we studied the photocycles of the N...

Descripción completa

Detalles Bibliográficos
Autores principales: Inoue, Keiichi, Konno, Masae, Abe-Yoshizumi, Rei, Kandori, Hideki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: WILEY-VCH Verlag 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4600240/
https://www.ncbi.nlm.nih.gov/pubmed/26215709
http://dx.doi.org/10.1002/anie.201504549
Descripción
Sumario:Sodium-pumping rhodopsins (NaRs) are light-driven outward Na(+) pumps. NaRs have a conserved Asn, Asp, and Gln motif (NDQ) in the third transmembrane helix (helix C). The NDQ motif is thus expected to play a crucial role in the operation of the Na(+) pump. Herein, we studied the photocycles of the NDQ-motif mutants of Krokinobacter rhodopsin 2 (KR2), the first discovered NaR, by flash photolysis, to obtain insight into the mechanism of Na(+) transport. For example, the KR2 N112A mutant did not accumulate the transient red-shifted Na(+)-bound state, suggesting that Asn112 is vital for the binding of Na(+) ions. Additionally, Q123A and Q123V mutants showed significantly slower Na(+) uptake and recovery of the initial state. Overall, the Gln123 residue was found to contribute to the optimization of the kinetics of sodium-ion uptake and release. These results demonstrate that the cooperative operation of the three residues of the NDQ motif are important in the operation of the Na(+) pump.